Skip to main content
Log in

A Scaling Calculation of the Scattering of 4He Atomic Beams

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe a simulation of the scattering in beams of helium atoms. The number of atoms N in the beams is reduced by a large scaling factor λ while the collision cross-section is increased by λ. This leaves the rate of scattering for each particle unchanged. As an example, we predict the outcome of a low temperature atomic beam experiment to measure the 4 He- 4 He atomic scattering cross-section σ at low energies. Because of the existence of a very weakly bound dimer, the low energy cross-section is expected to be unusually large, ∼1.83 × 10 5 Å 2 . In the simulation N/λ is small enough for the trajectories of all the scaled atoms to be calculated numerically. The simulation shows that the experiment is quite practicable. The proposed apparatus is just over 20 cm long, and a few centimeters wide, small enough to fit in a dilution refrigerator. The heaters and bolometers are assumed to be similar to those used in previous low temperature scattering experiments. We show that, using low intensity beams, the cross-section can be measured as a function of the relative velocity v r between ∼2 and ∼8 m/sec, corresponding to relative energies between ∼1 and ∼16 mK. By fitting σ(v r) one can determine the scattering length and effective range of the interaction. We predict that, at high intensity where multiple scattering is very important, the two beams coalesce into one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Wang, V. A. Shamamian, B. R. Thomas, J. M. Wilkinson, J. R. Riley, C. F. Giese, and W. R. Gentry, Phys. Rev. Lett. 60, 696 (1988).

    Google Scholar 

  2. J. C. Mester, E. S. Meyer, M. W. Reynolds, T. E. Huber, Z. Zhao, B. Freedman, J. Kim, and I. F. Silvera, Phys. Rev. Lett. 71, 1343 (1993).

    Google Scholar 

  3. J. C. Mester, E. S. Meyer, T. E. Huber, M. W. Reynolds, and I. F. Silvera, J. Low Temp. Phys. 89, 569 (1992).

    Google Scholar 

  4. F. Luo, G. C. McBane, G. Kim, and C. F. Giese, J. Chem. Phys. 98, 3564 (1993).

    Google Scholar 

  5. F. Luo, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 104, 1151 (1996).

    Google Scholar 

  6. W. Schöllkopf and J. P. Toennies, J. Chem. Phys. 104, 1155 (1996).

    Google Scholar 

  7. J. P. Toennies and K. Winkelmann, J. Chem. Phys. 66, 3965 (1977).

    Google Scholar 

  8. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press (1994).

  9. E. Meiburg, Phys. Fluids 29, 3107 (1986).

    Google Scholar 

  10. R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).

    Google Scholar 

  11. R. A. Aziz and M. J. Slaman, Metrologia 27, 211 (1990).

    Google Scholar 

  12. T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 106, 5109 (1997).

    Google Scholar 

  13. A. R. Janzen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).

    Google Scholar 

  14. R. de Bruyn Ouboter and C. N. Yang, Physica B 144, 127 (1987).

    Google Scholar 

  15. E. S. Meyer, J. C. Mester, and I. F. Silvera, J. Chem.Phys 100, 4021 (1994); F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 100, 4023 (1994).

    Google Scholar 

  16. Y. H. Uang and W. C. Stwalley, J. Phys. (Paris), 41, C7–33 (1980).

    Google Scholar 

  17. See, e.g., E. Merzbacher, Quantum Mechanics, Chap. 11, John Wiley (1970).

  18. E. S. Meyer, Collision Phenomena in Helium and Atomic Hydrogen: Quantum Gases at Low Temperature, Ph.D. thesis, Harvard University (1993).

  19. H. A. Bethe, Phys. Rev. 76, 38 (1949).

    Google Scholar 

  20. J. Lekner, Mol. Phys. 23, 619 (1972).

    Google Scholar 

  21. M. J. Jamieson, A. Dalgarno, and M. Kimura, Phys. Rev. A 51, 2626 (1995).

    Google Scholar 

  22. D. T. Meyer, H. Meyer, W. Hallidy, and C. F. Kellers, Cryogenics 3, 150 (1963).

    Google Scholar 

  23. D. O. Edwards, P. Fatouros, G. G. Ihas, P. Mrozinski, S. Y. Shen, F. M. Gasparini, and C. P. Tam, Phys. Rev. Lett. 34, 1153 (1975); D. O. Edwards and P. P. Fatouros, Phys. Rev. B 17, 2147 (1978).

    Google Scholar 

  24. V. U. Nayak, D. O. Edwards, and N. Masuhara, Phys. Rev. Lett. 50, 990 (1983).

    Google Scholar 

  25. K. Andres, R. C. Dynes, and V. Narayanamurti, Phys. Rev. A 8, 2501 (1973).

    Google Scholar 

  26. J. Eckardt, D. O. Edwards, F. M. Gasparini, and S. Y. Shen, in Proc. 13th Int. Conf. on Low Temperature Physics LT-13, Vol. 518, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (eds.), Plenum, New York (1974).

    Google Scholar 

  27. The flow chart is similar to that in the classic work of B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).

    Google Scholar 

  28. H. Kuze, Y. Oshima, and Y. Tanaka, Chem. Phys. Lett. 195, 400 (1992).

    Google Scholar 

  29. D. O. Edwards, G. G. Ihas, and C. P. Tam, Phys. Rev. B 16, 3122 (1977).

    Google Scholar 

  30. V. U. Nayak, The Scattering of 4 He Atoms off the Surface of Liquid 4 He at Grazing Angles of Incidence, Ph.D. thesis, The Ohio State University (1982).

  31. See, e.g., M. Nahum and J. M. Martinis, Appl. Phys. Lett. 63, 3075 (1993).

    Google Scholar 

  32. F. J. Low and A. R. Hoffman, Appl. Optics 2, 649 (1963).

    Google Scholar 

  33. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, Chap. 4, McGraw-Hill Book Company (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hjort, H.H., Viznyuk, S.A. & Edwards, D.O. A Scaling Calculation of the Scattering of 4He Atomic Beams. Journal of Low Temperature Physics 116, 99–132 (1999). https://doi.org/10.1023/A:1021831027102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021831027102

Keywords

Navigation