Skip to main content
Log in

Quantum Tunneling of D(H) Atoms and 2 in Solid Hydrogen

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper contains three results. First, the rate constants for the tunneling reaction HD + D → H + D 2 in solid HD increase steeply with increasing temperature above 5 K, while they are almost independent of temperature below 5 K. A mechanism of a vacancy–assisted tunneling reaction is proposed to account for this temperature dependence. Second, a hydrogen atom and a hydrogen molecule form a van der Waals complex in the Ar matrix at 20 K, where the tunneling reaction HD + D →H + D 2 takes place in this complex. The analysis of well–resolved ESR spectra of the complex determined the distance between a hydrogen atom and a hydrogen molecule as 2.3 – 2.5 Å. Third, the decay rate constants of \({\text{H}}_{\text{2}}^ - \) anions in solid parahydrogen decrease with decreasing temperature below 6.6 K, attain the minimum value at 5 K, and then increase with decreasing temperature in the range of 5 → 2.7 K. The abnormal temperature dependence of the decay rate constants below 5 K is ascribed to a phonon–scattering process of quantum diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980), and related papers on solid hydrogen cited therein.

    Google Scholar 

  2. T. Momose, K. E. Kerr, D. P. Weliky, C. M. Gabrys, R. M. Dickson, and T. Oka, J. Chem. Phys. 100, 789 (1994), and related papers on charged species cited therein.

    Google Scholar 

  3. V. Shevtov, A. Frolov, I. Lukashevich, E. Ylinen, P. Malmi, and M. Punkkinen, J. Low Temp. Phys. 95, 815 (1994), and related papers of them cited therein.

    Google Scholar 

  4. T. Miyazaki, K. Yamamoto, and J. Arai, Chem. Phys. Lett. 219, 405 (1994).

    Google Scholar 

  5. T. Kumada, H. Inagaki, T. Nagasawa, Y. Aratono, and T. Miyazaki, Chem. Phys. Lett. 251, 219 (1996).

    Google Scholar 

  6. T. Miyazaki, Radiat. Phys. Chem. 37, 635 (1991), and related papers before 1990 cited therein.

    Google Scholar 

  7. T. Miyazaki, S. Kitamura, H. Morikita, and K. Fueki, J. Phys. Chem. 96, 10331 (1992).

    Google Scholar 

  8. T. Takayanagi, N. Masaki, K. Nakamura, M. Okamoto, S. Sato, and G. C. Schatz, J. Chem. Phys. 86, 6133 (1987).

    Google Scholar 

  9. G. C. Hancock, C. A. Mead, D. G. Truhlar, and A. J. C. Varandas, J. Chem. Phys. 91, 3492 (1989).

    Google Scholar 

  10. T. Takayanagi and S. Sato, J. Chem. Phys. 92, 2862 (1990).

    Google Scholar 

  11. T. Miyazaki, T. Hiraku, K. Fueki, and Y. Tsuchihashi, J. Phys. Chem. 95, 26 (1991).

    Google Scholar 

  12. V. I. Goldanskii, V. A. Benderskii, and L. I. Trakhtenberg, Adv. Chem. Phys. 75, 349 (1989).

    Google Scholar 

  13. T. Kumada, K. Komaguchi, Y. Aratono, and T. Miyazaki, Chem. Phys. Lett. 261, 463 (1996).

    Google Scholar 

  14. M. Rall, D. Zhou, E. G. Kisvarsanyi, and N. S. Sullivan, Phys. Rev. B 45, 2800 (1992).

    Google Scholar 

  15. D. Zhou, C. M. Edwards, and N. S. Sullivan, Phys. Rev. Lett. 62, 1528 (1989).

    Google Scholar 

  16. C. Ebner and C. C. Sung, Phys. Rev. B 5, 2625 (1972).

    Google Scholar 

  17. D. Li and G. A. Voth, J. Chem. Phys. 100, 1785 (1994).

    Google Scholar 

  18. T. Miyazaki, T. Kumada, K. Komaguchi, and Y. Aratono, Radiat. Phys. Chem. in press (1997).

  19. T. Miyazaki, N. Iwata, K. Fueki, and H. Hase, J. Phys. Chem. 94, 1702 (1990).

    Google Scholar 

  20. T. Miyazaki, Chem. Phys. Lett. 176, 99 (1991).

    Google Scholar 

  21. T. Miyazaki, H. Morikita, K. Fueki, and T. Hiraku, Chem. Phys. Lett. 182, 35 (1991).

    Google Scholar 

  22. T. Miyazaki and H. Morikita, Bull. Chem. Soc. Jpn. 66, 2409 (1993).

    Google Scholar 

  23. K. Komaguchi, T. Kumada, Y. Aratono, and T. Miyazaki, Chem. Phys. Lett. 268, 493 (1997).

    Google Scholar 

  24. T. Miyazaki, K. Yamamoto, and Y. Aratono, Chem. Phys. Lett. 232, 229 (1995).

    Google Scholar 

  25. M. C. R. Symons, Chem. Phys. Lett. 247, 607 (1995).

    Google Scholar 

  26. P. J. Bruna, G. H. Lushington, and F. Grein, Chem. Phys. Lett. 258, 427 (1996).

    Google Scholar 

  27. T. Kumada, H. Inagaki, N. Kitagawa, K. Komaguchi, Y. Aratono, and T. Miyazaki, J. Phys. Chem. B 101, 1198 (1997).

    Google Scholar 

  28. T. Ichikawa, H. Tachikawa, J. Kumagai, T. Kumada, and T. Miyazaki, J. Phys. Chem. in press (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, T., Kumada, T., Kitagawa, N. et al. Quantum Tunneling of D(H) Atoms and 2 in Solid Hydrogen. Journal of Low Temperature Physics 111, 453–461 (1998). https://doi.org/10.1023/A:1022264509705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022264509705

Keywords

Navigation