Skip to main content
Log in

Convergence and energy bounding properties of the Nosanow cluster expansion

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We consider a one-dimensional linear lattice of particles whose mass, pair potential, and nearest neighbor separation are those of a real rare gas crystal. Numerical solution of the Hartree equation shows that the model behaves as a quantum crystal in the low mass, weak attraction case. In the basic Nosanow cluster approximation the cohesive energy of this helium-like system drops from 6.903°K/N (Hartree) to 3.64°K/N. When all except nearest neighbor correlations in the Jastrow function are taken as unity, the result is 3.69°K/N. For the case of nearest neighbor correlations only, we introduce a positive integral operator with properties akin to those of a transfer matrix and thus form a rigorous upper bound on the cohesive energy of the model system. The convergence rate of the Nosanow expansion is shown to depend on the ratio of the two highest eigenvalues of this operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. de Wette and B. R. A. Nijboer,Phys. Letters 18, 19 (1965).

    Google Scholar 

  2. L. H. Nosanow and G. L. Shaw,Phys. Rev. 128, 546 (1962).

    Google Scholar 

  3. D. Rosenwald,Phys. Rev. 154, 160 (1967).

    Google Scholar 

  4. L. H. Nosanow,Phys. Rev. 146, 120 (1966).

    Google Scholar 

  5. J. H. Hetherington, W. J. Mullin, and L. H. Nosanow,Phys. Rev. 154, 175 (1967).

    Google Scholar 

  6. K. A. Brueckner and J. Frohberg,Progr. Theoret. Phys. (Kyoto),Suppl. “Yukawa,” 383 (1965).

  7. K. A. Brueckner and J. Frohberg, inMany Body Theory, 1965 Tokyo Summer Lectures in Theoretical Physics, R. Kubo, ed. (W. A. Benjamin, Inc., New York, 1966), p. 134.

    Google Scholar 

  8. W. E. Massey and C.-W. Woo,Phys. Rev. 169, 241 (1968).

    Google Scholar 

  9. H. A. Kramers and G. H. Wannier,Phys. Rev. 60, 252 (1941).

    Google Scholar 

  10. L. Van Hove,Physica 16, 137 (1950).

    Google Scholar 

  11. G. F. Newell and E. W. Montroll,Rev. Mod. Phys. 25, 353 (1953).

    Google Scholar 

  12. F. R. Gantmacher,The Theory of Matrices, transl. by K. A. Hirsch (Chelsea Publishing Co., New York, 1960), p. 53.

    Google Scholar 

  13. M. A. Krasnosel'skii,Positive Solutions of Operator Equations, transl. by R. E. Flaherty, L. F. Boron, ed. (P. Noordhoff Ltd., Groningen, The Netherlands, 1964), Chaps. 1 and 2.

    Google Scholar 

  14. L. V. Kantorovich and G. P. Akhilov,Functional Analysis in Normed Spaces, transl. by D. E. Brown, A. P. Robertson, ed. (Pergamon Press, New York, 1964), p. 302.

    Google Scholar 

  15. L. V. Kantorovich and G. P. Akhilov,Functional Analysis in Normed Spaces, transl. by D. E. Brown, A. P. Robertson, ed. (Pergamon Press, New York, 1964), p. 517.

    Google Scholar 

  16. Carl-Erik Froberg,Introduction to Numerical Analysis (Addison-Wesley Publishing Co., Reading, Mass., 1965), p. 103.

    Google Scholar 

  17. S. B. Trickey,Phys. Rev. 166, 177 (1968).

    Google Scholar 

  18. J. Nuttall,Bull. Am. Phys. Soc. 13, 901 (1968).

    Google Scholar 

  19. J. W. Essam,J. Math. Phys. 8, 741 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the U.S. Air Force Office of Scientific Research under Grant No. AFOSR 918-67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trickey, S.B., Nuttall, J. Convergence and energy bounding properties of the Nosanow cluster expansion. J Low Temp Phys 1, 109–122 (1969). https://doi.org/10.1007/BF00628266

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00628266

Keywords

Navigation