Skip to main content
Log in

Report on the International Symposium “Evaluation of Current Trends in Fusion Research”

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. Rostoker, F. J. Wessel, H. U. Rahman, B. C. Maglich, B. Spivey, and A. Fisher (1993).Phys. Rev. Lett. 70, 1818.

    Google Scholar 

  2. S. Glasstone and R. H. Lovberg (1960).Controlled Thermonuclear Reactions (D. Van Nostrand Co., New York), Chap. 9.

    Google Scholar 

  3. D. Al-Salamehet al. (1985).Phys. Rev. Lett.,54, 796; B. C. Maglash (1988).Nucl. Instr. Meth. Phys. Res., Sect. A.,271, 13.

    Google Scholar 

  4. W. Heidbrinket al. (1988).Nucl. Fusion.,28, 2097; W. Heidbrink (1990).Phys. Fluids B,2, 4; W. Heidbrinket al. (1991).Phys. Fluids B,3, 3167; S. J. Zwebenet al. (1991).Nucl. Fusion,31, 2219.

    Google Scholar 

  5. M. M. Sluyteret al. (1994). Prospects for Inertial Fusion Energy—A 1994-Perspective, IAEA-CN-60, B-1-I-2,15th IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, October.

  6. B. G. Levi (1994). Veil of secrecy is lifted from parts of Livermore's laser fusion program.Phys. Today, September, 17–19.

    Google Scholar 

  7. Y. Katoet al. (1994). Indirect drive implosion of cannonball targets with blue GEKKO XII laser.Phys. Today, B-2-II-2.

  8. J. D. Kilkennyet al. (1994). High convergence X-ray driven implosions with hot spots.Phys. Today, B-2-II-3-1.

  9. H. Takabeet al. (1994). Numerical studies on stability and mixing.Phys. Today, B-P-9.

  10. N. A. Salingaros (1995). A critical comparison between magnetic and inertial confinement schemes and their geometries.Fusion Technol,27, 230.

    Google Scholar 

  11. E. Panarella (1980). Quasi-spherical compression of a spark channel plasma.Can. J. Phys.,58, 983.

    Google Scholar 

  12. E. Panarella and P. Savic (1983). Scaling laws for spherical pinch experiments.J. Fusion Energy,3, 199.

    Google Scholar 

  13. E. Panarella and V. Guty (1982). The Reximplo Spherical Pinch. Analysis of the Neutron Production Mechanism.Proceedings of 1982 IEEE International Conference on Plasma Science, Ottawa, Canada, p. 135.

  14. E. Panarella (1987). The spherical pinch.J. Fusion Energy,6, 285.

    Google Scholar 

  15. P. Savic and E. Panarella (1986). Theoretical analysis of soft X-ray generation in the plasma of a spherical pinch.J. Appl. Phys.,59, 3990.

    Google Scholar 

  16. F. Giammanco (1979).Il Nuovo Cimento,54B, 297.

    Google Scholar 

  17. N. G. Basov and D. N. Krohkin (1963).Proc. Third Int. Congress Quantum Electronics Columbia University Press, New York).

    Google Scholar 

  18. J. M. Dawson (1964).Phys. Fluids,7, 981.

    Google Scholar 

  19. J. W. Daiber, A. Hertzberg, and C. Wittliff (1965).Phys. Fluids,9, 617.

    Google Scholar 

  20. J. Nuckolls and G. Zimmermann (1972).Nature,239, 139.

    Google Scholar 

  21. C. Yamanaka (1972).Phys. Rev. A,6, 2335.

    Google Scholar 

  22. R. L. MacCrory (1993). Laser-driven ICF experiments inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martinez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 22.

    Google Scholar 

  23. R. O. Bangerter, W. B. Herrmansfeldt, and B. L. Judd, eds. (1976). ERDA Study of Heavy Ions for Inertial Fusion.LBL-5543, Lawrence Berkeley Laboratory.

  24. HIBALL-II: An Improved Heavy Ion Beam Driven Fusion Reactor Study (1984).UWFDM-625, University of Wisconsin, Fusion Technology Institute; see also:KfK-3840, Kernforschungszentrum Karlsruhe andFPA-84-4 (1984).Fusion Power Associates.

  25. C. Yamanaka and S. Nakai (1986). Laser implosion of high-aspects-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing.Nature,319, 757.

    Google Scholar 

  26. K. Mima, H. Takabe, and S. Nakai (1989). Pusherless implosion, pulse tailoring and ignition scaling law for laser fusion.Laser Particle Beams,7, 249.

    Google Scholar 

  27. C. Yamanaka (1993). Diagnostics of laser-imploded plasma. inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martinez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 20.

    Google Scholar 

  28. E. Gamaly (1993). Hydrodynamic instabilities of target implosion in ICF inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martinez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 13.

    Google Scholar 

  29. S. Nakai (1989). Laser fusion experiment.Laser Particle Beams,7, 467.

    Google Scholar 

  30. Y. Izawa and T. Norimatsu (1993). Target fabrication inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martinez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 21.

    Google Scholar 

  31. J. D. Lindl, R. M. MacCrory, and E. M. Campbell (1992).Phys. Today, September, 32.

    Google Scholar 

  32. A. Caruso and C. Strangio (1991).Nucl. Fusion,31, 1899.

    Google Scholar 

  33. J. Pace Van Devender and H. J. Bluhm (1993). Light ions accelerators for ICF inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martínez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 18.

    Google Scholar 

  34. R. W. Müller (1993). Heavy-ion accelerators for ICF inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martínez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 17.

    Google Scholar 

  35. M. Murakami and J. Meyer-ter-Vehn (1991). Indirectly driven targets for ICF.Nucl. Fusion,31, 1315.

    Google Scholar 

  36. G. Kessler, G. L. Kulcinski, and R. R. Peterson (1993). ICF reactors-conceptual design studies inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martínez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 25.

    Google Scholar 

  37. M. Perlado and J. Sanz (1993). Irradiation effects and activation in structural materials inNuclear Fusion by Inertial Confinement, G. Velarde, Y. Ronen, and J. M. Martinez-Val, eds. (CRC Press, Boca Raton, Florida), Chap. 24.

    Google Scholar 

  38. C. Deutsch (1990). Cluster stopping in dense plasmas.Laser and Particle Beams 8, 541; Idem C. Deutsch (1992). Ion cluster interaction with cold targets.Laser Particle Beams,10, 355; C. Deutsch and N. A. Tahir (1992). Fragmentation and stopping of heavy cluster ions. Application to target implosion.Phys. Fluids,134, 3735; S. Eliezer, Y. M. Martinez-Val, and C. Deutsch (1995). Cluster driven ICF.Laser Particle Beams,13, 43.

    Google Scholar 

  39. G. H. Miley et al. (1994). Dense Z Pinches, inAIP Conf. Proc. #299, M. Haines and A. Knight, eds., (AIP Press, New York), pp. 675–688.

    Google Scholar 

  40. R. W. Bussard (1991).Fusion Technol.,19, 273–293.

    Google Scholar 

  41. J. H. Nadler, G. H. Mileyet al. (1992).Fusion Technol.,21, 1639–1643.

    Google Scholar 

  42. R. W. Bussard and L. W. Jameson (1994).Proceedings of the 11th Symposium on Space Nuclear Power Propulsion, Conf. 940101 (AIP Press), p. 1289.

  43. G. H. Miley, A. J. Satsangi, J. De Mora, J. B. Javendani, Y. B. Gu, R. L. Burtonet al. (1994).30th Joint Propulsion Conference, #AIAA-94-3321. Indianapolis, IN, June 27–29.

  44. A. Hasegawa (1987).Commun. Plasma Phys. Contr. Fusion,11, 147.

    Google Scholar 

  45. A. Hasegawa, L. Chen, and M. E. Mauel (1990).Nucl. Fusion. 30, 2405.

    Google Scholar 

  46. A. Hasegawaet al. (1982).Fusion Technol.,22, 27.

    Google Scholar 

  47. E. Teller (1982).Fusion Technol. 22, 82.

    Google Scholar 

  48. R. F. Post (1987).Nucl. Fusion. 27, 1579.

    Google Scholar 

  49. T. J. Dolan (1994).Plasma Phys. Contr. Fusion.,36, 1539.

    Google Scholar 

  50. J. D. Lawson (1957).Proc. Phys. Soc. B. 70, 6.

    Google Scholar 

  51. J. R. Roth, W. M. Krawczonek, E. J. Powers, J. Y. Hong, and Y. C. Kim (1977). Inward transport of a toroidally confined plasma subject to strong radial electric fields.Phys. Rev. Lett.,40, 1450.

    Google Scholar 

  52. J. R. Roth, W. M. Krawczonek, E. J. Powers, J. Y. Hong, and Y. C. Kim (1981). The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields.Plasma Phys.,23, 509.

    Google Scholar 

  53. J. R. Roth (1983). Ion heating and containment in an electric field bumpy torus (EFBT) plasma.Nucl. Instr. Meth.,207, 271.

    Google Scholar 

  54. Idem (1993). Summary of the IAEA Technical Committee Meeting on Tokamak Plasma Biasing, Montreal, Canada, Sept. 8–10, 1992.Fusion Technol.,23, 246.

    Google Scholar 

  55. Idem J. R. Roth (1989). Ball lightning as a Route to Fusion Energy,Proc. 13th Symposium on Fusion Engineering, Knoxville, TN, Oct. 2–6, 1989, IEEE Catalog No. 89CH2820-9.

  56. Idem (1995). Ball lightning: What nature is trying to tell the plasma research community.Fusion Technol.,27, 255.

    Google Scholar 

  57. P. M. Koloc (1977). Method and Apparatus of Generating and Utilizing a Compound Plasma Configuration. U.S. Patent 4,023,065, May 10, 1977.

  58. Idem (1989). Plasma star power for energy intensive space applications.Fusion Technol.,15, 1136.

    Google Scholar 

  59. Idem P. M. Koloc (1988). The Plasmak Configuration and Ball Lightning.Proc. International Symposium Ball Lightning, Tokyo, Japan, July 1988.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Washington, D.C., November 14–18, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppi, B., Deutsch, C., Panarella, E. et al. Report on the International Symposium “Evaluation of Current Trends in Fusion Research”. J Fusion Energ 14, 281–327 (1995). https://doi.org/10.1007/BF02215181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02215181

Keywords

Navigation