Skip to main content
Log in

Comparative Detoxification of Plant (Magnolia virginiana) Allelochemicals by Generalist and Specialist Saturniid Silkmoths

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The foliage of sweetbay magnolia (Magnolia virginana) contains at least two biologically active phenylpropanoid compounds (magnolol and a biphenyl ether) that are toxic to a number of generalist insect herbivores. These compounds have little effect on caterpillars of the sweetbay silkmoth, C. securifera, which is a specialist on sweetbay, but they are toxic to two closely related silkmoths, C. angulifera and C. promethea. To understand the influence of phytochemistry on the evolution of host use and feeding specialization in Callosamia, the detoxification capability of C. securifera was compared with that of C. angulifera and C. promethea. Degradation of magnolol and the biphenyl ether by midgut homogenate of the sweetbay specialist was NADPH-dependent and inhibited by piperonyl butoxide, suggesting the involvement of cytochrome P-450 detoxification enzymes. Both were degraded three times faster in the specialist compared to the unadapted herbivores. Higher rates of degradation could not be induced in the polyphagous C. promethea by a mixture of magnolol and the biphenyl ether or by the P-450 inducer pentamethylbenzene, nor did activity vary significantly when larvae were reared on different host plants. Use of sweetbay by Callosamia silkmoths appears to be dependent on their ability to degrade host toxins rapidly via midgut detoxification enzymes. Moreover, the intraspecific comparisons contradict the common prediction that higher levels of cytochrome P-450 activity are found in more polyphagous species; instead, P-450 activity is more closely associated with specific chemical attributes of the herbivores' host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmad, S. 1979. The functional roles of cytochrome P-450 mediated systems: Present knowledge and future areas of investigation. Drug Metab. Rev. 10:1-14.

    Google Scholar 

  • Ahmad, S. 1983. Mixed-function oxidase activity in a generalist herbivore in relation to its biology, food plants, and feeding history. Ecology 64:235-243.

    Google Scholar 

  • Ahmad, S., Brattsten, L. B., Mullin, C. A., and Yu, S. J. 1986. Enzymes involved in the metabolism of plant allelochemicals, pp. 73-151, in L. B. Brattsen and S. Ahmad (ed.). Molecular Aspects of Insect—Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Aucoin, R. R., PhilogÈne, B. J. R., and Arnason, J. 1991. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 16:139-152.

    Google Scholar 

  • Berenbaum, M. R. 1991. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17:213-221.

    Google Scholar 

  • Berenbaum, M. R., Nitao, J. K., and Zangerl, A. R. 1991. Adaptive significance of furanocoumarin diversity in Pastinaca sativa (Apiaceae). J. Chem. Ecol. 17:207-215.

    Google Scholar 

  • Berenbaum, M. R., Cohen, M. B., and Schuler, M. A. 1992. Cytochrome P-450 monooxygenase genes in oligophagous Lepidoptera, pp. 114-124, in C. A. Mullin and J. G. Scott (eds.). ACS Symposium Series 505. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Bernard, C. B., Arnason, J. T., PhilogÈne, B. J. R., Lam, J., and Waddell, T. 1989. Effect of lignans and other secondary metabolites of the Asteraceae on the mono-oxygenase activity of the European corn borer. Phytochemistry 28:1373-1377.

    Google Scholar 

  • Brattsten, L. B. 1979. Ecological significance of mixed-function oxidations. Drug Metab. Rev. 10:35-59.

    Google Scholar 

  • Brattsten, L. B. 1992. Metabolic defenses against plant allelochemicals, pp. 176-242. in G. A. Rosenthal, and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. II. Ecological and Evolutionary Processes. Academic Press, New York.

    Google Scholar 

  • Bull, D. L., Ivie, G. W., Beier, R. C., Pryor, N. W., and Oertli, E. H. 1984. Fate of photosensitizing furanocoumarins in tolerant and sensitive insects. J. Chem. Eco. 10:893-911.

    Google Scholar 

  • Bull, D. L. Ivie, G. W., Beier, R. C., and Pryor, N. W. 1986. In vitro metabolism of a linear furanocoumarin (8-methoxypsoralen, xanthotoxin) by mixed-function oxidases of larvae of black swallowtail butterfly and fall armyworm. J. Chem. Ecol. 12:885-892.

    Google Scholar 

  • Carino, F., Koener, J. F., Plapp, F. W., and Feyereisen, R. 1992. Constitutive overexpression of the cytochrome P-450 gene CYP6A1 in the housefly, Musca domestica, pp. 31-40, in C. A. Mullin, and J. G. Scott (eds.). ACS Symposium Series 505. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Chang, W. S., Chang, Y. H., Lu, F. I., and Chiang, H. C. 1994. Inhibitory effects of phenolics on xanthine oxidase. Anticancer Res. 14(2a):501-506.

    Google Scholar 

  • Clark, A. M., El-Feraly, F. S., and Li, W. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70(8):951-952.

    Google Scholar 

  • Cohen, M. B., Berenbaum, M. R., and Schuler, M. A. 1989. Induction of cytochrome P-450-mediated detoxification of xanthotoxin in the black swallowtail. J. Chem. Ecol. 15:2347-2355.

    Google Scholar 

  • Cohen, M. B., Schuler, M. A., and Berenbaum, M. R. 1992. A host plant inducible cytochrome P-450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. U.S.A. 89:10920-10924.

    Google Scholar 

  • Dowd, P. F., Smith, C. M., and Sparks, T. C. 1983. Detoxification of plant toxins by insects. Insect Biochem. 13:453-468.

    Google Scholar 

  • Ehrlich, P. R., and Raven, P. R. 1964. Butterflies and plants: A study in coevolution. Evolution 18:586-608.

    Google Scholar 

  • Faure, M., Lissi, E., Torres, R., and Videla, L. 1990. Antioxidant activities of lignans and flavonoids. Phytochemistry 29(12):3773-3775.

    Google Scholar 

  • Ferguson, D. C. 1972. Bombycoidea, Saturniidae (in part). In R. B. Dominick (ed.). The Moths of America North of Mexico. Fascicle 20.2. Classey, Ltd. and RBD Publications, Inc., London.

    Google Scholar 

  • Feyereisen, R., Koener, J. F., Farnsworth, D. E., and Nebert, D. W. 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc. Natl. Acad. Sci. U.S.A. 86:1465-1469.

    Google Scholar 

  • Fugita, S., and Taira, J. 1994. Biphenyl compounds are hydroxyl radical scavengers: their effective inhibition for UV-induced mutation in Salmonella typhimurium TA102. Free Radic. Biol. Med. 17(3):273-277.

    Google Scholar 

  • Fukuyama, Y., Otoshi, Y., Miyoshi, K., Nakamura, K., Kodama, M., Nagasawa, M., Hasegawa, T., Okazaki, H., and Sugawara, M. 1992. Neurotrophic sesquiterpene neolignans from Magnolia obovata: Structure and neurotrophic activity. Tetrahedron 48(3):377-392.

    Google Scholar 

  • Futuyma, D., and Moreno, G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207-233.

    Google Scholar 

  • Gunderson, C. A., Brattsen, L. B., and Fleming, J. T., 1986. Microsomal oxidase and glutathione transferase as factors influencing the effects of pulegone in southern and fall armyworm larvae. Pestic. Biochem. Physiol. 26:238-249.

    Google Scholar 

  • Haraguchi, H., Ishikawa, H., Shirataki, N., and Fukuda, A. 1997. Antiperoxidative activity of neolignans from Magnolia obovata. J. Pharm. Pharmacol. 49(2):209-212.

    Google Scholar 

  • Hong, C. Y., Huang, S. S., and Tsai, S. K. 1996. Magnolol reduces infarct size and suppresses ventricular arrhythmia in rats subjected to coronary ligation. Clin. Exp. Pharm. Physiol. 23(8):660-664.

    Google Scholar 

  • Johnson, K. S., Scriber, J. M., and Nair, M. 1996a. Phenylpropanoid phenolics in sweetbay magnolia as chemical determinants of host use in saturniid silkmoths (Callosamia). J. Chem. Ecol. 22:1955-1969.

    Google Scholar 

  • Johnson, K. S., Snider, D., and Scriber, J. M. 1996b. Estimates of genetic differentiation among Callosamia species and Hyalophora cecropia (Saturniidae) using allozyme electrophoresis. J. Lepid. Soc. 50(3):217-225.

    Google Scholar 

  • Krieger, R. I., Feeny, P. P., and Wilkinson, C. F. 1971. Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defenses? Science 172:579-581.

    Google Scholar 

  • Lee, K., and Berenbaum, M. R. 1992. Ecological aspects of antioxidant enzymes and glutathiones-transferases in three Papilio species. Biochem. Syst. Ecol. 20:197-207.

    Google Scholar 

  • Lindroth, R. L. 1988. Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochem. 8:789-792.

    Google Scholar 

  • Lindroth, R. L. 1989. Biochemical detoxication: Mechanism of differential tiger swallowtail tolerance to phenolic glycosides. Oecologia 81:219-224.

    Google Scholar 

  • Lindroth, R. L. 1991. Differential toxicity of plant allelochemicals to insects: Roles of enzymatic detoxication systems. pp. 1-33 in E. A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Lo, Y. C., Teng, C. M., Chen, C. F., Chen, C. C., and Hong, C. Y. 1994. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem. Pharm. 47(3):549-553.

    Google Scholar 

  • Ma, Y., Ye, J., Fukasaku, N., Hattori, M., and Namba, T. 1988. Metabolism of magnolol from magnolia cortex (IV) Enterohepatic circulation and gastrointestinal excretion of (Ring 14C) magnolol in rats. Shoyakugaku Zasshi 42:130-134.

    Google Scholar 

  • Ma, R., Cohen, M. B., Berenbaum, M. R., and Schuler, M. A. 1994. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P-450s that selectively metabolize linear furanocoumarins. Arch. Biochem. Biophys. 310:332-340.

    Google Scholar 

  • MACRae, W. D., and Towers, G. H. N. 1984. Biological activity of lignans. Phytochemistry 23:1207-1226.

    Google Scholar 

  • Marty, M. A., and Krieger, R. I. 1984. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae, Danaus plexippus L. J. Chem. Ecol. 10:945-956.

    Google Scholar 

  • Neal, J. J. 1987. Metabolic costs of mixed-function oxidase induction in Heliothis zea. Entomol. Exp. Appl. 43:175-180.

    Google Scholar 

  • Nitao, J. K. 1989. Enzymatic adaptation in a specialist herbivore for feeding on furanocoumarin-containing plants. Ecology 70:629-635.

    Google Scholar 

  • Nitao, J. K. 1995. Evolutionary stability of swallowtail adaptations to plant toxins, pp. 39-52, in J. M. Scriber, Y. Tsubaki, and R. C. Lederhouse (eds.). Swallowtail Butterflies: Their Ecology and Evolution. Scientific Publishers, Washington, D.C.

    Google Scholar 

  • Nitao, J. K., Nair, M. G., Thorogood, D. L., Johnson, K. S., and Scriber, J. M. 1991. Bioactive neolignans from the leaves of Magnolia virginiana. Phytochemistry 30(7):2193-2195.

    Google Scholar 

  • Nitao, J. K., Johnson, K. S., Scriber, J. M., and Nair, M. G. 1992. Magnolia virginiana neolignan compounds as chemical barriers to swallowtail butterfly host use. J. Chem. Ecol. 18(9):1661-1671.

    Google Scholar 

  • Ogata, M., Hoshi, M., Shimotohno, K., Urano, S., and Endo, T. 1997. Antioxidant activity of magnolol, honokiol and related phenolic compounds. J. Amer. Oil Chem. Soc. 74(5):557-562.

    Google Scholar 

  • Pacific, G. M., Vannucci, L., Bencini, C., Tusini, G., and Mosca, F. 1991. Sulphation of hydroxybiphenyls in human tissues. Xenobiotica 21:1113-1118.

    Google Scholar 

  • Pardini, R. S., Bowen, C. A., Ahmad, S., and Blomquist, G. J. 1989. Adaptations to plant pro-oxidants in a phytophagous insect model: Enzymatic protection from oxidative stress, pp. 725-728, in Oxygen Radicals in Biology and Medicine. M. G. Simic, K. A. Taylor, J. F. Ward, and C. von Sonntagg (eds.). Plenum Press, New York.

    Google Scholar 

  • Piegler, R. S. 1977. Hybridization of Callosamia (Saturniidae). J. Lepid. Soc. 31:23-34.

    Google Scholar 

  • Piegler, R. S. 1980. Demonstration of reproductive isolating mechanisms in Callosamia (Saturniidae) by artificial hybridization. J. Res. Lepid. 19:72-81.

    Google Scholar 

  • Powis, B., Moore, D. J., Wilke, T. J., and Santone, K. S. 1991. A high-performance liquid chromatography assay for measuring integrated biphenyl metabolism by intact cells: Its use with rat liver and human liver and kidney. Anal. Biochem. 167:191-198.

    Google Scholar 

  • Rose, H. A. 1985. The relationship between feeding specialization and host plants to aldrin epoxidase activities of midgut homogenates in larval Lepidoptera. Ecol. Entomol. 10:455-467.

    Google Scholar 

  • Sarker, S. D. 1997. Biological activity of magnolol: A review. Fitoterapia 68(1):3-8.

    Google Scholar 

  • SAS Institute. 1985. SAS User's Guide: Statistics, Version 5 Edition. SAS Institute, Inc. Cary, North Carolina.

    Google Scholar 

  • Stone, S. E. 1991. Foodplants of world Saturniidae. Lepid. Soc. Memoir 4. Lepidopterists' Society, Lawrence, Kansas.

    Google Scholar 

  • Teng, C. M., Yu, S. M., Chen, C. C., Huang, Y. L., and Huang, T. F. 1990. EDRF-release and calcium ion channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis in rat thoracic aorta. Life Sci. 47(13):1153-1162.

    Google Scholar 

  • Tsai, T. H., Lee, T. F., Chen, C. F., and Wang, L. C. H. 1995. Modulatory effects of magnolol on potassium-stimulated 5-hydroxytryptamine release from rat cortical and hippocampal slices. Neurosci. Lett. 186(1):49-52.

    Google Scholar 

  • Tsai, T. H., Chou, C. J., and Chen, C. F. 1996. Pharmacokinetics and brain distribution of magnolol in the rat after intravenous bolus injection. J. Pharm. Pharmacol. 48:57-59.

    Google Scholar 

  • Wadleigh, R. W., and Yu, S. J. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14:1279-1288.

    Google Scholar 

  • Wang, J. P., Ho, T. F., Chang, L. C., and Chen, C. C. 1995. Anti-inflammatory effect of magnolol, isolated from Magnolia officinalis, on A23187-induced pleurisy in mice. J. Pharm. Pharmacol. 47(10):857-860.

    Google Scholar 

  • Whittaker, R. H., and Feeny, P. P. 1971. Allelochemics: Chemical interactions between species. Science 171:757-770.

    Google Scholar 

  • Wilkinson, L. 1990. Systat: The System for Statistics. SYSTAT, Inc., Evanston, Illinois.

    Google Scholar 

  • Yu, S. J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsia gemmatalis) insect. J. Chem. Ecol. 13:423-436.

    Google Scholar 

  • Yu, S. J., and Ing, R. T. 1984. Microsomal biphenyl hydroxylase of fall armyworm and its induction by allelochemicals and hostplant. Comp. Biochem. Physiol. 78C:145-152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, K.S. Comparative Detoxification of Plant (Magnolia virginiana) Allelochemicals by Generalist and Specialist Saturniid Silkmoths. J Chem Ecol 25, 253–269 (1999). https://doi.org/10.1023/A:1020890628279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020890628279

Navigation