Skip to main content
Log in

Phenylpropenoid phenolics in sweetbay magnolia as chemical determinants of host use in saturniid silkmoths (Callosamia)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Host plant chemistry can play an important role in determining the evolution of host use patterns in herbivorous insects by influencing host selection, consumption, and assimilation of foliage. We used a comparative approach to test the hypothesis that specialist herbivores of sweetbay magnolia (Magnolia virginiana) possess adaptations that allow them to overcome chemical deterrents or toxins that prevent herbivory by unadapted herbivores. The three silkmoth species in the genusCallosamia can be collectively regarded as specialists on magnoliaceous hosts; however, only the monophagousC. securifera is able to complete development on sweetbay magnolia, its natural host. In laboratory assays with intact foliage, bothC. angulifera and the polyphagousC. promethea fed readily on sweetbay but were unable to survive past the third instar. Two neolignan compounds, magnolol and a biphenyl ether, were found to reduce neonate growth and survival of unadapted herbivore species when painted on acceptable host leaves at concentrations similar to those found in sweetbay foliage. Both compounds significantly reduced neonate growth ofC. angulifera andC. promethea but had no effect on the sweetbay specialist,C. securifera, indicating that the latter species possesses the unique ability in the genus to tolerate, metabolize, or otherwise circumvent the phytochemical defenses of this host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa, P. 1988. Some thoughts on “the evolution of host range.”Ecology 69:912–915.

    Google Scholar 

  • Barbosa, P., Gross, P., Provan, G. J., Pacheco, D. Y., andStermitz, F. R. 1990. Allelochemicals in foliage of unfavored tree hosts of the gypsy moth,Lymantria dispar L. 1. Alkaloids and other components ofLiriodendron tulipifera L. (Magnoliaceae),Acer rubrum L. (Aceraceae), andCornus florida L. (Cornaceae).J. Chem. Ecol. 16:1719–1730.

    Google Scholar 

  • Benson, W. W., Brown, K. S., andGilbert, L. E. 1975. Coevolution of plants and herbivores: Passion flower butterflies.Evolution 29:659–680.

    Google Scholar 

  • Berenbaum, M. 1978. Toxicity of a furanocoumarin to armyworms: A case for biosynthetic escape from insect herbivores.Science 201:532–534.

    Google Scholar 

  • Berenbaum, M. 1981. Furanocoumarin distribution and insect herbivory in Umbelliferae: Plant chemistry and community structure.Ecology 62:1254–1266.

    Google Scholar 

  • Berenbaum, M., Zangerl, A. R., andNitao, J. K. 1986. Constraints on chemical coevolution: Wild parsnips and the parsnip webworm.Evolution 40:1215–1228.

    Google Scholar 

  • Berenbaum, M., Zangerl, A. R., andLee, K. 1991. Chemical barriers to adaptation by a specialist herbivore.Oecologia 80:501–506.

    Google Scholar 

  • Bernard, C. B., Arnason, J. T., Philogène, B. J. R., Lam, J. andWaddell, T. 1989. Effect of lignans and other secondary metabolites of the Asteraceae on the monooxygenase activity of the European corn borer.Phytochemistry 28(5):1373–1377.

    Google Scholar 

  • Bernays, E. A., andChapman, R. F., 1987. The evolution of deterrent responses in plant-feeding insects, pp. 159–173,in R. F. Chapman, E. A. Bernays, and J. G. Stoffolano, Jr. (eds.). Perspectives in Chemoreception and Behavior. Springer-Verlag, New York.

    Google Scholar 

  • Bernays, E. A., andGraham, M. 1988. On the evolution of host specificity in phytophagous arthropods.Ecology 69(4):886–892.

    Google Scholar 

  • Blau, P. A., andFeeny, P. 1978. Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance.Science 200:1296–1298.

    Google Scholar 

  • Bowers, D. M. 1988. Chemistry and coevolution: Iridoid glycosides. plants, and herbivorous insects, pp. 133–165,in K. C. Spencer (ed.). Chemical Medication of Coevolution Academic Press, New York.

    Google Scholar 

  • Brown, L. N. 1972. Mating behavior and life habits of the sweet-bay silk moth (Callosamia carolina).Science 176:73–75.

    Google Scholar 

  • Clark, A. M., El-Feraly, F. S., andLi, W. 1981. Antimicrobial activity of phenolic constituents ofMagnolia grandiflora L.J. Pharm. Sci. 70(8):951–952.

    PubMed  Google Scholar 

  • Doskotch, R. W., andFlom, M. S. 1972. Acuminatin, a newbis-phenylpropide fromMagnolia acuminata L.Tetrahedron 28:4711–4717.

    Google Scholar 

  • Ehrlich, P. R. andRaven, P. H. 1964. Butterflies and plants: A study in coevolution.Evolution 18:586–608.

    Google Scholar 

  • El-Feraly, F. S., andYee-Ming, C. 1978. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin fromMagnolia grandiflora L.J. Pharm. Sci. 67:347–350.

    PubMed  Google Scholar 

  • Erickson, J. M., andFeeny, P. 1974. Sinigrin: a chemical barrier to the black swallowtail butterfly,Papilio polyxenes.Ecology 55:103–111.

    Google Scholar 

  • Farrell, B., andMitter, C. 1990. Phylogenesis of insect/plant interactions: HavePhyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel?Evolution 44:1389–1404.

    Google Scholar 

  • Faure, M., Lissi, E., Torres, R., andVidela, L. 1990. Antioxidant activities of lignans and flavonoids.Phytochemistry 29(12):3773–3775.

    Google Scholar 

  • Feeny, P. P. 1991. Chemical constraints on the evolution of swallowtail butterflies. pp. 315–340,in P. W. Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson (eds.). Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley, New York.

    Google Scholar 

  • Feeny, P. P., Rosenberry, L., andCarter, M. 1983. Chemical aspects of oviposition behavior in butterflies, pp. 27–76,in S. Ahmad (ed.). Herbivorous Insects: Host-Seeking Behavior and Machanisms. Academic Press, New York.

    Google Scholar 

  • Ferguson, D. C. 1972. Bombycoidea, Saturniidae (in part).In R. B. Dominick, (ed.). The Moths of America North of Mexico. Fasc. 20.2B. Classey, London.

    Google Scholar 

  • Fraenkel, G. 1959. The raison d'etre of secondary plant substances.Science 129:1466–1470.

    PubMed  Google Scholar 

  • Futuyma, D. J., andMcCafferty, S. S. 1990. Phylogeny and the evolution of host plant associations in the leaf beetle genusOphraella (Coleoptera, Chrysomelidae).Evolution 44:1885–1913.

    Google Scholar 

  • Johnson, K. S., Snider, D., andScriber, J. M. 1996. Estimates of genetic differentiation amongCallosamia species andHyalophora cecropia (Saturniidae) using allozyme electrophoresis.J. Lepid. Soc. 50:217–225.

    Google Scholar 

  • Lawton, J. H., andMcNeill, S. 1979. Between the devil and the deep blue sea: On the problem of being a herbivore.Symp. Br. Ecol. Soc. 20:223–244.

    Google Scholar 

  • Lindroth, R. L., Scriber, J. M., andHsia, M. T. S. 1986. Differential responses of tiger swallowtail subspecies to secondary metabolites from tulip tree and quaking aspen.Oecologia 70:13–19.

    Google Scholar 

  • Lindroth, R. L., Scriber, J. M., andHsia, M. T. S. 1988. Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides.Ecology 69:814–822.

    Google Scholar 

  • MacRae, W. D., andTowers, G. H. N. 1984. Biological activity of lignans.Phytochemistry 23:1207–1226.

    Google Scholar 

  • Miller, J. S. 1987. Host-plant relationships in the Papilionidae (Lepidoptera): Parallel cladogenesis or colonization?Cladistics 3:105–120.

    Google Scholar 

  • Mitter, C., andBrooks, D. R. 1983. Phylogenetic aspects of coevolution, pp. 65–98,in D. J. Futuyma and M. Slatkin (eds.). Coevolution. Sinauer Press, Sunderland, Massachusetts.

    Google Scholar 

  • Nitao, J. K., 1995. Evolutionary stability of swallowtail adaptations to plant toxins, pp. 39–52,in J. M. Scriber, Y. Tsubaki, and R. C. Lederhouse (eds.). Swallowtail Butterflies: Their Ecology and Evolution. Scientific Publishers, Washington, D.C.

    Google Scholar 

  • Nitao, J. K., Nair, M. G., Thorogood, D. L., Johnson, K. S., andScriber, J. M. 1991. Bioactive neolignans from the leaves ofMagnolia virginiana.Phytochemistry 30(7):2193–2195.

    Google Scholar 

  • Nitao, J. K., Johnson, K. S., Scriber, J. M., andNair, M. G. 1992.Magnolia virginiana neolignan compounds as chemical barriers to swallowtail butterfly host use.J. Chem. Ecol. 18(9):1661–1671.

    Google Scholar 

  • Peigler, R. S. 1976. Observations on host plant relationships and larval nutrition inCallosamia (Saturniidae).J. Lepid. Soc. 30:184–187.

    Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPherson, B. A., Thompson, J. N., andWeiss, A. E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies.Ann. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Price, P. W., Westoby, M., Rice, B., Atsatt, P. R., Fritz, B. S., Thompson, J. N., andMobly, K. 1986. Parasite mediation in ecological interactions.Ann. Rev. Ecol. Syst. 17:487–505.

    Google Scholar 

  • Rao, K. V., andDavis, T. L. 1982. Constituents ofMagnolia grandiflora. III. Toxic principle of the wood.J. Nat. Prod. 45:283–287.

    PubMed  Google Scholar 

  • Rao, K. V., andJuneau, R. J. 1975. Glycosides ofMagnolia. III. Structural elucidation of magnolidin.Lloydia (J. Nat. Prod.) 38:339–342.

    Google Scholar 

  • Rausher, M. 1988. Is Coevolution dead?Ecology 69(4):898–901.

    Google Scholar 

  • Scriber, J. M. 1988. Tale of the tiger: Beringial biogeography, binomial classification, and breakfast choices in the Papilio glaucus complex of butterflies, pp. 241–301,in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press. New York.

    Google Scholar 

  • Scriber, J. M., andLederhouse, R. C. 1992. The thermal environment as a resource dictating geographic patterns of feeding specialization of insect herbivores, pp. 429–466,in M. R. Hunter, R. Ohgushi, and P. W. Price (eds.). Effects of Resource Distribution on Animal-Plant Interactions. Academic Press, New York.

    Google Scholar 

  • Scriber, J. M., Lindroth, R. L., andNitao, J. 1989. Differential toxicity of a phenolic glycoside from quaking aspen toPapilio glaucus butterfly subspecies, hybrids and backcrosses.Oecologia 81:186–191.

    Google Scholar 

  • Spencer, K. C. 1988. Chemical mediation of coevolution in thePassiflora-Heliconius interaction. pp. 167–240,in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Stone, S. E. 1991. Foodplants of world Saturniidae. p. 13.Lepid. Soc. Mem. 4:000.

  • Thompson, J. N. 1988. Coevolution and alternative hypotheses on insect/plant interactions.Ecology 69(4):893–895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, K.S., Scriber, J.M. & Nair, M. Phenylpropenoid phenolics in sweetbay magnolia as chemical determinants of host use in saturniid silkmoths (Callosamia). J Chem Ecol 22, 1955–1969 (1996). https://doi.org/10.1007/BF02040088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02040088

Key Words

Navigation