Skip to main content
Log in

Structure-activity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae)

All stereoisomers of chalcogran and methyl 2,4-decadienoate

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Syntheses of all four Stereoisomers (2S,5S; 2S,5R;2R,5R; and2R,5S) of chalcogran, a major component of the aggregation pheromone ofPityogenes chalcographus, and of all four isomers (2Z,4Z; 2Z,4E; 2E,4E; and 2E,4Z) of methyl 2,4-decadienoate (MD), the second major pheromone component, are briefly described. Attraction responses of walking beetles of both sexes were tested to mixtures of the synergistic pheromone components or analogs. These bioassays showed that theE,Z isomer of MD is the most active when tested with chalcogran. When tested with (E,Z)-MD, (2S,5R)-chalcogran was the most active stereoisomer, while 2R,5R and 2R,5S isomers had intermediate activities, and the 2S,5S isomer was inactive. There was no evidence that the relatively less active Stereoisomers of chalcogran inhibited or promoted attraction to (2S,5R)-chalcogran with (E,Z)-MD. Male beetles only produce the activeE,Z isomer of MD (inactive alone) and their hindguts contain the most active (2S,5R)- and least active (2S,5S)-chalcogran. A mixture of all MD isomers with racemic chalcogran was not significantly different in attractivity compared to (E,Z)-MD with racemic chalcogran, indicating no synergistic or inhibitory effects of the inactive isomers of MD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baeckström, P., Jacobsson, U., Norin, T. andUnelius, C.R. 1988. Synthesis and characterization of all four isomers of methyl 2,4-decadienoate for an investigation of the pheromone components ofPityogenes chalcographus.Tetrahedron 44:2541–2548.

    Google Scholar 

  • Banerji, A., andPal, S.C. 1983. Total synthesis of sylvamide, aPiper alkamide.Phytochemistry 22:1028–1030.

    Google Scholar 

  • Björkling, F., Norin, T., andUnelius, C.R. 1987. A stereospecific synthesis of all fourisomers of 9,11-tetradecadienyl acetate using a general method applicable to 1,3-dienes.J. Org. Chem. 52:292–294.

    Google Scholar 

  • Borden, J.H., Chong, L., Mclean, J.A., Slessor, K.M., andMori, K. 1976.Gnathotrichus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol.Science 192:894–896.

    Google Scholar 

  • Browne, L.E., Birch, M.C., andWood, D.L. 1974. Novel trapping and delivery systems for airborne insect pheromones.J. Insect Physiol. 20:183–193.

    Google Scholar 

  • Byers, J.A., andWood, D.L. 1981. Interspecific effects of pheromones on the attraction of the bark beetles,Dendroctonus brevicomis andIps paraconfusus in the laboratory.J. Chem. Ecol. 7:9–18.

    Google Scholar 

  • Byers, J.A., Lanne, B.S., Löfqvist, J., Schlyter, F., andBergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles.Naturwissenschaften 72:324–326.

    Google Scholar 

  • Byers, J.A., Birgersson, G., Löfqvist, J., andBergström, G. 1988. Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle.Naturwissenschaften 75:153–155.

    Google Scholar 

  • Byers, J.A.,Birgersson, G.,Löfqvist, J.,Appelgren, M., andBergström, G. 1989. Isolation of pheromone synergists ofPityogenes chalcographus from complex insect-plant odors by gas Chromatographie fractionation and subtractive-combination bioassay.J. Chem. Ecol. (submitted).

  • Cardé, R.T., andBaker, T.C. 1984. Sexual communication with pheromones. pp. 355–383,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.

    Google Scholar 

  • Crombie, L., andDenman, R. 1984. Insecticidal amides. Synthesis of natural 2(E),4(E),10(E)-pipercide, its 2(E),4(E),10(Z)-stereomer, and related isobutylamides.Tetrahedron Lett. 25:4267–4270.

    Google Scholar 

  • Deans, D.R. 1981. Use of heart cutting in gas chromatography: A review.J. Chromatogr. 203:19–28.

    Google Scholar 

  • Fieser, L.F. 1964.Organic Experiments. p. 162 D.C. Heath & Co., Boston.

    Google Scholar 

  • Francke, W., Heemann, V., Gerken, B., Renwick, J.A.A., andVitë, J.P. 1977. 2-Ethyl-1,6-dioxaspiro[4.4]nonane, principal aggregation pheromone ofPityogenes chalcographus (L.).Naturwissenschaften 64:590–591.

    Google Scholar 

  • Francke, W., Reith, W., andSinnwell, V. 1980. Bestimmung der relativen Konfiguration bei Spiroacetalen durch1H-und13C-NMR-Spektroskopie.Chem. Ber. 113:2686–2693.

    Google Scholar 

  • Garigipati, R.S., andWeinreb, S.M. 1983. Stereospecific synthesis of acyclic unsaturated amino alcohols. A new approach to threo- and erythro-sphingosine.J. Am. Chem. Soc. 105:4499–4501.

    Google Scholar 

  • Högberg, H.E., Hedenström, E., Isaksson, R., andWassgren, A.B. 1987. Preparation of the four stereoisomers of chalcogran, pheromone components ofPityogenes chalcographus and of both enantiomers of γ-caprolactone, pheromone component ofTrogoderma granarium.Acta. Chem. Scand. Ser. B 41:694–697.

    Google Scholar 

  • Isaksson, R., andRöschester, J. 1985. Preparative and analytical enantiomer separation of some delta-1,3-thiazoline-2-thiones on swollen microcrystalline triacetylcellulose (TAC).J. Org. Chem. 50:2519–2521.

    Google Scholar 

  • Koppenhoefer, B., Hintzer, K., Weber, R., andSchurig, V. 1980. Quantitative Trennung der Enantiomerenpaare des Pheromons 2-Ethyl-1,6-dioxaspiro[4.4]nonan durch Komplexierung-schromatographie an einem optisch aktiven Metallkomplex.Angew. Chem. 92:473–474.

    Google Scholar 

  • Leadbetter, G., andFlimmer, J.R. 1979. An improved preparation of some insect sex attractants: Synthesis and separation of geometrical isomers by formation of urea complexes.J. Chem. Ecol. 5:101–108.

    Google Scholar 

  • Pearce, G.T., Gore, W.E., Silverstein, R.M., Peacock, J.W., Cuthbert, R.A., Lanier, G.N., andSimeons, J.B. 1975. Chemical attractants for the smaller European elm bark beetle,Scolytus multistriatus (Coleoptera: Scolytidae).J. Chem. Ecol. 1:115–124.

    Google Scholar 

  • Renwick, J.A.A., Hughes, P.R., andKrull, I.S. 1976. Selective production ofcis- andtrans- verbenol from (+)-α-pinene by a bark beetle.Science 191:199–201.

    Google Scholar 

  • Rickards, G., andWeiler, L. 1978. Stereoselective synthesis of 1-substituted (E,E)- and (E,Z)-2,4-decadienyl derivatives.J. Org. Chem. 43:3607–3609.

    Google Scholar 

  • Roush, W.R. 1980. Total synthesis of (±)-dendrobine.J. Am. Chem. Soc. 102:1390–1404.

    Google Scholar 

  • Schurig, V., andWeber, R. 1984. Use of glass and fused-silica open tubular columns for the separation of structural, configurational and optical isomers by selective compiexation gas chromatography.J. Chromatogr. 289:321–332.

    Google Scholar 

  • Silverstein, R.M., Rodin, J.O., andWood, D.L. 1966. Sex attractants in frass produced by maleIps paraconfusus in ponderosa pine.Science 154:509–510.

    Google Scholar 

  • Silverstein, R.M., Rodin, J.O., andWood, D.L. 1967. Methodology for isolation and identification of insect pheromones with reference to studies on California five-spinedIps.J. Econ. Entomol. 60:944–949.

    Google Scholar 

  • Silverstein, R.M., Brownlee, R.G., Bellas, T.E., Wood, D.L., andBrowne, L.E. 1968. Brevicomin: Principal sex attractant in the frass of the female western pine beetle.Science 59:889–890.

    Google Scholar 

  • Smith, L.R.,Williams, H.J., andSilverstein, R.M. 1978. Facile synthesis of optically active 2-ethyl-1,6-dioxaspiro[4.4]nonane, component of the aggregation pheromone of the beetlePityogenes chalcographus (L.).Tetrahedron Lett. 3231–3232.

  • Stille, J.K., andGroh, B.L. 1987. Stereospecific cross-coupling of vinyl halides with vinyl tin reagents catalyzed by palladium.J. Am. Chem. Soc. 109-813-817.

  • Vité, J.P. 1965. 1st die vorbeugende Begiftung von Fangbaume zweckmassig?Allg. Forstzeitschrift 20:438–439.

    Google Scholar 

  • Vité, J.P., andRenwick, J.A.A. 1970. Differential diagnosis and isolation of population attractants.Contrib. Boyce Thompson Inst. 24:323–328.

    Google Scholar 

  • Weir, J.R., Patel, B.A., andHeck, R.F. 1980. Palladium-catalyzed triethylammonium formate reductions. 4. Reduction of acetylenes tocis monoenes and hydrogenolysis of tertiary allylic amines.J. Org. Chem. 45:4926–4931.

    Google Scholar 

  • Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles.Annu. Rev. Entomol. 27:411–446.

    Google Scholar 

  • Wood, D.L., Browne, L.E., Ewing, B., Lindahl, K., Bedard, W.D., Tilden, P.E., Mori, K., Pitman, G.B., andHughes, P.R. 1976. Western pine beetle: Specificity among enantiomers of male and female components of an attractive pheromone.Science 192:896–898.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byers, J.A., Högberg, HE., Unelius, C.R. et al. Structure-activity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae). J Chem Ecol 15, 685–695 (1989). https://doi.org/10.1007/BF01014711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014711

Key words

Navigation