Skip to main content
Log in

Nigericin forms highly stable complexes with lithium and cesium

  • Original Article
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Nigericin is a monocarboxylic polyether molecule described as a mobile K+ ionophore unable to transport Li+ and Cs+ across natural or artificial membranes. This paper shows that the ion carrier molecule forms complexes of equivalent energy demands with Li+, Cs+, Na+, Rb+, and K+. This is in accordance with the similar values of the complex stability constants obtained from nigericin with the five alkali metal cations assayed. On the other hand, nigericinalkali metal cation binding isotherms show faster rates for Li+ and Cs+ than for Na+, K+, and Rb+, in conditions where the carboxylic proton does not dissociate. Furthermore, proton NMR spectra of nigericin-Li+ and nigericin-Cs+ complexes show wide broadenings, suggesting strong cation interaction with the ionophore; in contrast, the complexes with Na+, K+, and Rb+ show only clear-cut chemical shifts. These latter results support the view that nigericin forms highly stable complexes with Li+ and Cs+ and contribute to the explanation for the inability of this ionophore to transport the former cations in conditions where it catalyzes a fast transport of K+>Rb+>Na+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton, R., and Steinrauf, L. K. (1970).J. Mol. Biol. 49 547–556.

    Google Scholar 

  • Ben-Hayyim, G., and Krause, G. H. (1980).Arch. Biochem. Biophys. 202 546–557.

    Google Scholar 

  • Cotton, F. A., and Wilkinson, G. (1966).Advanced Inorganic Chemistry, 2nd edn., Interscience (Wiley), New York.

    Google Scholar 

  • Day, M. C., and Selbin, J. (1969).Theoretical Inorganic Chemistry, 2nd edn. Van Norstrand Reinhold, New York.

    Google Scholar 

  • Eisenman, G. (1967). InGlass Electrodes for Hydrogen and Other Cations Eisenman, G., ed.), Marcel Dekker, New York, pp. 268–283.

    Google Scholar 

  • Eisenman, G., Ciani, S. M., and Szabo, G. (1968).Fed. Proc. 27 1289–1304.

    Google Scholar 

  • Estrada-O., S., Graven, S. N., and Lardy, H. A. (1967a).Fed. Proc. 26 610–614.

    Google Scholar 

  • Estrada-O., S., Graven, S. N., and Lardy, H. A. (1967b).J. Biol. Chem. 242 2925–2932.

    Google Scholar 

  • Graven, S. N., Estrada-O., S., and Lardy, H. A. (1966).Proc. Natl. Acad. Sci. USA 56 654–658.

    Google Scholar 

  • Hatefi, Y., and Yagi, T., Phelps, D. C., Wong, S. Y., Vik, S. B., and Galante, Y. M. (1982).Proc. Natl. Acad. Sci. USA 79 1756–1760.

    Google Scholar 

  • Henderson, P. J. F., McGivan, J. D., and Chappell, J. B. (1969).Biochem. J. 111 521–535.

    Google Scholar 

  • Markin, V. S., Sokolov, V. S., Boguslavsky, L. I., and Jaguzhinsky, L. S. (1975).J. Membr. Biol. 25 23–45.

    Google Scholar 

  • Mitchell, P. (1968). InChemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall, England.

    Google Scholar 

  • Osborne, M. W., Wegner, J. J., and Zanko, M. T. (1977).J. Pharmacol. Exp. Ther. 200 195–205.

    Google Scholar 

  • Osborne, M. W., Wegner, J. J., Kovzelove, F., Boyd, R., and Zanko, M. T. (1982). InPolyether Antibiotics (Westley, J. W., ed.), Vol. 1. Marcel Dekker, New York, pp. 333–340.

    Google Scholar 

  • Pressman, B. C. (1968).Fed. Proc. 27 1283–1288.

    Google Scholar 

  • Riddell, F. G., Arumugam, S., Brophy, P. J., Cox, B. G., Payne, M. C. H., and Southon, T. E. (1988).J. Am. Chem. Soc. 110 734–738.

    Google Scholar 

  • Rodios, N. A., and Anteunis, M. (1977).Bull. Soc. Chim. Belg. 86 917–929.

    Google Scholar 

  • Smith, J. M. (1981).Chemical Engineering Kinetics, 3rd edn. McGraw-Hill, New York.

    Google Scholar 

  • Taylor, R. W., Kauffman, R. F., and Pfeiffer, D. R. (1982). InPolyether Antibiotics (Westley, J. W., ed.), Vol. 1, Marcel Dekker, New York, pp. 103–184.

    Google Scholar 

  • Toro, M., Gómez-Lojero, C., Montal, M., and Estrada-O., S. (1976).J. Bioenerg. 8 19–26.

    Google Scholar 

  • Toro, M., Arzt, E., Cerbón, J., Algería, G., Alva, R., Meas, Y., and Estrada-O., S. (1987).J. Membr. Biol. 95 1–8.

    Google Scholar 

  • Tosteson, D. C., Andreoli, T. E., Tieffenberg, M., and Cook, P. (1968).J. Gen. Physiol. 51, 373s-.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alva, R., Lugo-R, J.A., Arzt, E. et al. Nigericin forms highly stable complexes with lithium and cesium. J Bioenerg Biomembr 24, 125–129 (1992). https://doi.org/10.1007/BF00769539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769539

Key words

Navigation