Skip to main content
Log in

The use of amphipathic maleimides to study membrane-associated proteins

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD-β-hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1988).Proc. Natl. Acad. Sci. USA 85, 8487–8491.

    Google Scholar 

  • Bacher, M. A., and Wheeler, K. P. (1985).Biochem. Soc. Trans. 13, 700–701.

    Google Scholar 

  • Blair, P. V. (1967).Methods Enzymol. 10, 78–81.

    Google Scholar 

  • Bock, H-G., and Fleischer, S. (1974).Methods Enzymol. 32, 374–391.

    Google Scholar 

  • Bock, H-G., and Fleischer, S. (1975).J. Biol. Chem. 250, 5774–5781.

    Google Scholar 

  • Bose, A. K., Greer, F., and Prior, C. C. (1985).J. Org. Chem. 1335–1338.

  • Chappel, J. B., and Crofts, A. P. (1966). InRegulation of Metabolic Processes in Mitochondria, Vol. 7, BBA Library, Elsevier, Amsterdam, 273–278.

    Google Scholar 

  • Chasteen, M. O. (1983).Trends Biochem. Sci. 8, 272–275.

    Google Scholar 

  • Churchill, P., Brenner, S. C., Partis, M. D., Griffiths, D. G., Beechey, R. B., and Fleischer, S. (1982).Fed. Proc. 41, 6570.

    Google Scholar 

  • Dalton, E., McIntyre, J. O., and Fleischer, S. (1984).Biophys. J., 147a.

  • El-Sharif, A., and Banner, M. (1985).Biochem. Soc. Trans. 13, 252–253.

    Google Scholar 

  • Felberg, N. T., and Hollocher, T. C. (1972).J. Biol. Chem. 247, 4539–4542.

    Google Scholar 

  • Findlay, J. B. C., and Pappin, D. J. C. (1986).Biochem. J. 238, 625–642.

    Google Scholar 

  • Fleischer, S., Meissner, G., Smigel, M., and Wood, R. (1974).Methods Enzymol. 71, 292–299.

    Google Scholar 

  • Fonyo, A. (1974).Biochem. Biophys. Res. Commun. 57, 1069–1073.

    Google Scholar 

  • Fonyo, A., Ligetti, E., Palmieri, F., and Quagliarello, E. (1975). InBiomembranes-Structure and Function. FEBS Symposium 35 Gardes, G., and Szasz, S., (eds.), Akadamiai Kiado, Budapest, pp. 287–304.

    Google Scholar 

  • Gray, T. M., and Matthews, B. W. (1984).J. Mol. Biol. 175, 75–81.

    Google Scholar 

  • Gregory, J. D. (1955).J. Am. Chem. Soc. 77, 3922–3923.

    Google Scholar 

  • Griffiths, D. G. (1984).Ph. D. Thesis, University of Kent.

  • Griffiths, D. G., Partis, M. D., Sharp, R. N., and Beechey, R. B. (1981).FEBS Lett. 134, 261–263.

    Google Scholar 

  • Griffiths, D. G., Pringle, M. J., Hughes, J. B., and Sanadi, D. R. (1984).J. Bioenerg. Biomembr. 16, 465–475.

    Google Scholar 

  • Hadvary, P., and Kadenbach, B. (1976).Eur. J. Biochem. 67, 573–581.

    Google Scholar 

  • Heitz, J. P., Anderson, C. D., and Anderson, B. M. (1968).Arch. Biochem. Biophys. 127, 627–636.

    Google Scholar 

  • Holton, F. A., and Beechey, R. B. (1959).Biochem. J. 73, 29p.

    Google Scholar 

  • Houstek, J., Bertoli, E., Stipeni, I., Pavelka, S., Megli, J., and Palmieri, F. (1982).Proc. 2nd European Bioenergetics Conf., Lyon, France, pp. 479–480.

  • Houstek, J., Bertoli, E., Stipeni, I., Pavelka, S., Megli, J., and Palmieri, F. (1983)FEBS Lett. 154, 185–190.

    Google Scholar 

  • Ikemoto, N. (1982).Annu. Rev. Physiol. 44, 297–317.

    Google Scholar 

  • Jennings, M. L. (1989).Annu. Rev. Biochem. 58, 999–1027.

    Google Scholar 

  • Jorgenson, P. L. (1982).Biochim. Biophys. Acta. 694, 27–68.

    Google Scholar 

  • Kenney, W. C. (1975).J. Biol. Chem. 250, 3089–3094.

    Google Scholar 

  • Kilman, H. J., and Steck, T. L. (1980).J. Biol. Chem. 250, 9176–9184.

    Google Scholar 

  • Klingenberg, M., Durand, R., and Guerin, B. (1974).Euro. J. Biochem. 42, 135–150.

    Google Scholar 

  • LeQuoc, K., LeQuoc, D., and Gaudemer, Y. (1981).Biochemistry 20, 1705–1710.

    Google Scholar 

  • MacDonald, P. M., McDonough, B., Sykes, B. D., and McElhaney, P. N. (1983).Biochemistry 23, 4496.

    Google Scholar 

  • MacDonald, P. M., Sykes, B. D., McElhaney, P. M., and Gunstone, F. D. (1985).Biochemistry 24, 177–184.

    Google Scholar 

  • McConnell, H. M., and Farland, B. G. (1975).Ann. N.Y. Acad. Sci. 195, 207.

    Google Scholar 

  • Moore, R. J., and Beechey, R. B. (1984).Biochem. Soc. Trans. 13, 690–691.

    Google Scholar 

  • Moore, A. L., Proudlove, M. O., Partis, M. D., and Beechey, R. B. (1984). InAdvances in Photosynthesis Research. Vol III (Sybesma, E., ed.), Nihoff/Junk, The Hague, pp. 9.902–9.912.

    Google Scholar 

  • Rees, D. C., Komiya, H., Yeates, T. O., Allen, D. P. and Feher, G. (1989).Annu. Rev. Biochem. 58, 607–633.

    Google Scholar 

  • Rich, D. H., Gesellschen, P. D., Tong, A., Cheung, A., and Buckner, C. K. (1975).J. Med. Chem. 18, 1004–1010.

    Google Scholar 

  • Schaper, K. J. (1982).Quant. Struct. Act. Rel. 1, 13–27.

    Google Scholar 

  • Schnaitman, C. A., and Greenwalt, J. W. (1968).J. Cell. Biol. 38, 158–175.

    Google Scholar 

  • Searle, N. E. (1948). U.S. Patent No. 2444536.

  • Steck, T. L., and Kant, J. A. (1974).Methods Enzymol. 31, 172–180.

    Google Scholar 

  • Tausky, H. H., and Schorr, E. (1953).J. Biol. Chem. 202, 675–685.

    Google Scholar 

  • Tsou, K. C., Barnett, R. J., and Seligman, A. M. (1955).J. Am. Soc. 77, 4613–4617.

    Google Scholar 

  • Tyler, D. D. (1969).Biochem. J. 111, 665–668.

    Google Scholar 

  • Tyler, D. D. (1980).Biochem. J. 192, 821–828.

    Google Scholar 

  • Veeger, C., Devertanian, D. V., and Zeelimaker, W. P. (1969).Methods Enzymol. 12, 84–86.

    Google Scholar 

  • Wohlrab, H. (1978).Biochem. Biophys. Res. Commun. 83, 1430–1435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, D.G., Partis, M.D., Churchill, P. et al. The use of amphipathic maleimides to study membrane-associated proteins. J Bioenerg Biomembr 22, 691–707 (1990). https://doi.org/10.1007/BF00809072

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00809072

Key Words

Navigation