Skip to main content
Log in

n-hexane as a model for compressed simple liquids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Isobaric thermal expansivities, αp, ofn-hexane have been measured by pressure-controlled scanning calorimetry from just above the saturation vapor pressure to 40 MPa at temperatures from 303 to 453 K and to 300 MPa at 503 K. These new data are combined with literature data to obtain a correlation equation for αp valid from 240 to 503 K at pressures up to 700 MPa. Correlation equations are developed for the saturated vapor pressure, specific volume, and isobaric heat capacity of liquid n-hexane from 240 to 503 K. Calculated volumes, isobaric and isochoric specific heat capacities. isothermal compressibilities, and thermal coefficients of pressure are presented for the entire range of pressure and temperature. The pressure-temperature behavior of these quantities is discussed as a model behavior for simple liquids without strong intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Randzio, inExperimental Thermodynamics, Vol. 11, Solution Calorimetry, K. N. Marsh and P. A. G. O'Hare, eds. (Blackwell Scientific, Oxford, in press) (1994).

    Google Scholar 

  2. Ph. Pruzan,J. Phys. Lett. 45:273 (1984).

    Google Scholar 

  3. S. L. Randzio,Thermochini. Acta 121:463 (1987).

    Google Scholar 

  4. Ph. Pruzan,J. Chem. Thermodynam. 234:247 (1991).

    Google Scholar 

  5. B. A. Grigoryev, Y. L. Rastorguyev, A. A. Gerasimov, D. S. Kurumov, and S. A. Plotnikov,Int. J. Thermophys. 9:439 (1988).

    Google Scholar 

  6. Tables of standard reference datan-hexane.Thermodynamic Properties in the Ranges 180...630 K and 0.1...100 MPa, GSSSD 90-85 (USSR State Committee on Standards. Moscow, 1986) (in Russian).

  7. S. L. Randzio, D. J. Eatough, E.A. Lewis, and L. D. Hansen,J. Chem. Thermodynam. 20:937 (1988).

    Google Scholar 

  8. G. L. Thomas and S. Young,J. Chem. Soc. 67:1071 (1885).

    Google Scholar 

  9. L. B. Willingham, W. J. Taylor, J. M. Pignocco, and F. D. Rossini,J. Res. Natl. Bur. Stand. 35:219 (1945).

    Google Scholar 

  10. D. E. Stewart, B. H. Sage, and W. N. Lacey,Ind. Eng. Chem. 46:2529 (1954).

    Google Scholar 

  11. W. B. Nichols, H. H. Reamer, and B. H. Sage,AlChE J. 3:262 (1957).

    Google Scholar 

  12. S. B. Kay,J. Chem. Eng. Data 16:137 (1971).

    Google Scholar 

  13. S. A. Wieczorek and J. Stecki,J. Chem. Thermodynamic. 10:177 (1978).

    Google Scholar 

  14. H. Wolff and A. Shadiyakhy,Fluid Phase Equil. 7:309 (1981).

    Google Scholar 

  15. R. A. Orwoll and P. J. Flory,J. Am. Chem. Soc. 89:6814 (1967).

    Google Scholar 

  16. Y. L. Rastorguyev, B. A. Grigoryev, and D. S. Kurumov,Izvest. Vysshikh Ucheh. Zavedenii Neft i Gaz 11:61 (1976).

    Google Scholar 

  17. D. S. Kurumov and B. A. Grigoryev,Zhurn. Phyz. Khim. 56:551 (1982).

    Google Scholar 

  18. P. W. Bridgman,Proc. Am. Acad. Arts. Sci. 66:185 (1931).

    Google Scholar 

  19. H. E. Eduljee, D. M. Newitt, and K. Weale,J. Chem. Soc. 4:3086 (1951.

    Google Scholar 

  20. E. Kuss and M. Taslimi,Chem. Ing. Techn. 42:1073 (1970).

    Google Scholar 

  21. R. Ta'ani, Dissertation (Universität Karlsruhe, Karlsruhe, 1976).

  22. J. H. Dymond, K. J. Young, and J. D. Isdale,J. Chem. Thermodynam. 11:887 (1979).

    Google Scholar 

  23. P. G. Tail,I. Report on Some of the Physical Properties of Fresh Water and of Sea Water, The Report cur the Scientific Results of the Vorage of the H.M.S. Challenger, Physics and Chemistry, Vol. 11. Part IV, 1888.

  24. R. Ginell,J. Chem. Phys. 35:1776 (1961).

    Google Scholar 

  25. V. Ruzicka, M. Zabransky, and V. Majer,J. Phys. Chem. Ref Data 20:405 (1991).

    Google Scholar 

  26. G. S. Parks and H. M. Huffman,J. Am. Chem. Soc. 52:4381 (1930).

    Google Scholar 

  27. H. M. Huffman, G. S. Parks, and M. Barmore,J. Am. Chem. Soc. 53:2705 (1931).

    Google Scholar 

  28. D. R. Stull,J. Am. Chem. Soc. 59:2726 (1937).

    Google Scholar 

  29. N. M. Philip,Proc. Indian Acad. Sci. Sect. A 9:109 (1939).

    Google Scholar 

  30. D. R. Douslin and H. M. Hufman,J. Am. Chem. Soc. 68:1704 (1946).

    Google Scholar 

  31. T. J. Connolly, B. H. Sage, and W. N., Lacey,Ind. Eng. Chem. 43:946 (1951).

    Google Scholar 

  32. E. Wilhelm, E. Rott, and F. Kohler,Proc. Ist Int. Conf. Calor. Thermodynam. (PWN, Warsaw, 1969), pp. 767–771.

    Google Scholar 

  33. W. M. Recko, K. W. Sadowska, and M. K. Woycicka,Bull. Acad. Pol. Sci. Ser. Sci. Chm. 19:475 (1971).

    Google Scholar 

  34. M. Diaz Pena and J. A. R. Renuncio,An. Quim. 70:113 (1974).

    Google Scholar 

  35. B. A. Grigoriev, Y. L. Rastorguyev, and G. S. Yanin,Izvest. Vyssikh Uchebn. Zavedenii Neft i Gaz 18:63 (1975).

    Google Scholar 

  36. M. H. Karbalai Ghassemi and J.-P. E. Grolier,Int. Data Ser. Sel. Data Mix. A 95:2 (1976).

    Google Scholar 

  37. B. Kalinowska, J. Jedlinska, W. Woycicki, and J. Stecki,J. Chem. Thermodynam. 12:891 (1980).

    Google Scholar 

  38. J.-P. E. Grolier, A. Inglese, A. Roux, and E. Wilhelm,Ber. Bansenges. Phys. Chem. 85:768 (1981).

    Google Scholar 

  39. E. Wilhelm, A. Inglese, I. R. Quint, and J.-P. E. Grolier,J. Chem. Thermodynam. 14:303 (1982).

    Google Scholar 

  40. G. C. Benson, P. J. D'Arcy, and M. K. Kumaran,Thermochim. Acta 75:353 (1984).

    Google Scholar 

  41. R. Bravo, M. Pintos, M. C. Baluja, M. J. Paz Andrade, G. Roux-Desgranges, and J.-P. E. Grolier,J. Chem. Thermodynam. 16:73 (1984).

    Google Scholar 

  42. M. Costas and D. Patterson,Int. Data Ser. Sel. Data Mix. A 212:3 (1985).

    Google Scholar 

  43. M. Costas and D. Patterson,J. Chem. Soc. Faraday Trans. 1 81:635 (1985).

    Google Scholar 

  44. I. Czarnota,High Temp.-High Press. 17:543 (1985).

    Google Scholar 

  45. G. C. Benson and P. J. D'Arcy,Can. J. Chem. 64:2109 (1986).

    Google Scholar 

  46. B. A. Grigoryev and R. A. Andolenko,Izvest. Vysshikh Uchebn. Zavedenii Neft i Gaz 27:60 (1984).

    Google Scholar 

  47. A. A. Gerasimov,Izvest. Vysshikh Uchchn. Zaredenii Neft i Gaz 23:60 (1980).

    Google Scholar 

  48. S. L. Randzio,Phys. Lett. A 117:1473 (1986).

    Google Scholar 

  49. W. B. Street,Physica 76:59 (1974).

    Google Scholar 

  50. A. A. Gerasimov and B. A. Grigoriev,Izvest. Vysshikh Uehebn. Zavedenii Neft i Gaz 21:46 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randzio, S.L., Grolier, J.P.E., Quint, J.R. et al. n-hexane as a model for compressed simple liquids. Int J Thermophys 15, 415–441 (1994). https://doi.org/10.1007/BF01563706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01563706

Key Words

Navigation