Skip to main content
Log in

Primary production: Marine ecosystems

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

The seas occupy the greater part (70%) of the earth's surface, but their total net primary production is less than that of the land. Depletion of nutrients in the lighted surface waters is responsible for low productivities of most of the open ocean; higher productivities occur in coastal waters and areas of upwelling. A recent estimate of total production for the marine plankon is 50×10 9 metric tons of dry matter per year; the total with benthic production may be 55×109 tons/year. The value for the plankton may be too low; there are persistent problems in measuring productivity with the radiocarbon technique. Because harvestable fish populations are concentrated in a limited area of more productive waters, where they are subject to overharvest and pollution effects, major increase in food production from the seas is not likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, G. C. (1969). Subsurface chlorophyll maximum in the northeast Pacific Ocean.Limnol. Oceanog. 14:386–391.

    Google Scholar 

  • Bunt, J. S. (1963). Diatoms of Antarctic sea ice as agents of primary production.Nature 199:1255–1257.

    Google Scholar 

  • Bunt, J. S. (1965). Measurements of photosynthesis and respiration in a marine diatom with the mass spectrometer and with carbon-14.Nature 207:1373–1375.

    Google Scholar 

  • Bunt, J. S. (1968). Some characteristics of microalgae isolated from Antarctic sea ice.Antarctic Res. Ser. 11:1–14.

    Google Scholar 

  • Bunt, J. S., and Lee, C. C. (1970). Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967.J. Mar. Res. 28:304–320.

    Google Scholar 

  • Dugdale, R. C. (1967). Nutrient limitation in the sea: Dynamics identification, and significance.Limnol. Oceanog. 12:685–695.

    Google Scholar 

  • Eppley, R. W., Rogers, J. N., and McCarthy, J. J. (1969). Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton.Limnol. Oceanog. 14:912–920.

    Google Scholar 

  • FAO (1971).Yearbook of Fishery Statistics, Vol. 30:Catches and Landings, 1970, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Jackson, W. A., and Volk, R. J. (1970). Photorespiration.Ann. Rev. Plant Physiol. 21:385.

    Google Scholar 

  • Koblentz-Mishke, O. J., Volkovinsky, V. V., and Kabanova, J. G. (1970). Plankton primary production of the world ocean. In Wooster, W. S. (ed.),Scientific Exploration of the South Pacific, National Academy of Sciences, Washington, D.C., pp. 183–193.

    Google Scholar 

  • McAllister, D. C. (1970). Zooplankton rations, phytoplankton mortality and the estimation of marine production. In Steele, J. H. (ed.),Marine Food Chains, University of California, Berkeley and Los Angeles, pp. 419–457.

    Google Scholar 

  • Provasoli, L. (1963). Organic regulation of phytoplankton fertility. In Hill, M. N. (ed.),The Sea, Vol. 2, Interscience, New York, pp. 165–219.

    Google Scholar 

  • Provasoli, L., McLaughlin, J. J. A., and Droop, M. R. (1957). The development of artificial media for marine algae.Arch. Mikrobiol. 25:392–428.

    Google Scholar 

  • Rabinowitch, E. I. (1945).Photosynthesis, Vol. I, Interscience, New York.

    Google Scholar 

  • Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963). The influence of organisms on the composition of sea water. In Hill, M. N. (ed.),The Sea, Vol. 2, Interscience, New York, pp. 76–77.

    Google Scholar 

  • Russell-Hunter, W. D. (1970).Aquatic Productivity, Macmillan, London.

    Google Scholar 

  • Ryther, J. H. (1956). Interrelation between photosynthesis and respiration in the marine flagellate,Dunalielle euchlora. Nature 178:861–862.

    Google Scholar 

  • Ryther, J. H. (1959). Potential productivity of the sea.Science 130: 602–608.

    Google Scholar 

  • Ryther, J. H. (1963). Geographic variations in productivity. In Hill, M. N. (ed.),The Sea, Vol. 2, Interscience, New York, pp. 347–380.

    Google Scholar 

  • Ryther, J. H. (1969). Photosynthesis and fish production in the sea.Science 166:72–76.

    Google Scholar 

  • Ryther, J. H., and Dunstan, W. M. (1971). Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.

    Google Scholar 

  • Sieburth, J. M., and Jensen, A. (1970). Studies on algal substances in the sea. II. the formation of gelb stoff by exudate of Phaeophyta.J. Expl. Mar. Biol. Ecol. 3:275–289.

    Google Scholar 

  • Smayda, T. J. (1970). The suspension and sinking of phytoplankton in the sea.Oceanog. Mar. Biol. Ann. Rev. 8:353–414.

    Google Scholar 

  • Steemann Nielsen, E. (1952). The use of radioactive carbon (14C) for measuring organic production in the sea.J. Conseille Permanente Internat. Exploration de Mer 18:117–140.

    Google Scholar 

  • Steemann Nielsen, E., and Hansen, V. K. (1959). Measurements with the carbon-14 technique of the respiration rates in natural populations of phytoplankton.Deep-Sea Res. 5:222–233.

    Google Scholar 

  • Steemann Nielsen, E., and Jensen, E. A. (1957). Primary oceanic production. The autotrophic production of organic matter in the oceans.Galathea Rep. 1:49–135.

    Google Scholar 

  • Strickland, J. D. H. (1965). Production of organic matter in the primary stages of the marine food chain. In Riley, J. P., and Skirrow, G. (eds.),Chemical Oceanography, Vol. 1, Academic Press, New York, pp. 477–610.

    Google Scholar 

  • Strickland, J. D. H., and Parsons, T. R. (1965). A Manual of Sea Water Analysis, Fisheries Research Board of Canada, Publication No. 125.

  • Thomas, J. P. (1971). Release of dissolved organic matter for natural populations of marine phytoplankton.Mar. Biol. 11:311–323.

    Google Scholar 

  • Vishniac, W. (1971). Limits of microbial productivity in the ocean. In Hughes, D. E., and Rose, A. H. (eds.), Microbes and Biological Productivity.Symp. Soc. Gen. Microbiol. 21:355–366.

  • Wassink, K. E. C. (1959). Efficiency of light energy conversion in plant growth.Plant Physiol. 34:356–361.

    Google Scholar 

  • Westlake, D. F. (1963). Comparisons of plant productivity.Biol. Rev. 38:385–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunt, J.S. Primary production: Marine ecosystems. Hum Ecol 1, 333–345 (1973). https://doi.org/10.1007/BF01536730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01536730

Keywords

Navigation