Skip to main content
Log in

Poincaré gauge invariant spinor theory and the gravitational field. II

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The nonlinear equation for an abstract noncanonical 2-component Weyl spinor field — as used with the inclusion of internal symmetries in Heisenberg's nonlinear spinor theory of elementary particles — which is invariant under scale, phase, and Poincaré transformations is modified in such a way as to become invariant under spacetime dependent phase gauge and Poincaré gauge transformations. In such an equation a phase gauge field B m , six Lorentz gauge fields A[κλ]m and four translation gauge fields gμm have to be introduced. It is demonstrated that all these fields can be identified as certain combinations of the Weyl spinor field, and hence should be considered in a rough sense as ‘bound states’ of this spinor field. In particular the ‘electromagnetic field’ Bm and the ‘gravitational field’ g μm appear as S-states and P-states of a spinor-antispinor system. The noncanonical property and the operator character of the spinor field is essential for this result. The relation between the translation gauge field and the spinor field involves a fundamental length. In a classical geometrical interpretation this relation leads to Einstein's equation of gravitation without cosmological term in a Riemannian space without torsion if the fundamental length is identified with Planck's length. It is shown that this equation is covariant under the larger symmetry group of phase gauge and Poincaré gauge transformations. The modified nonlinear equation constructed solely from a single 2-component Weyl field hence seems to incorporate in an extremely compact way ‘electromagnetic’ and ‘gravitational’ interaction in addition to non-mass-zero interactions. In this equation no arbitrary dimensionless constants enter. The considerations can be generalized to Dirac spinor fields and to spinor fields involving additional interior degress of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dürr, H.P. and Winter, N.J. (1970).Nuovo Cimento,A70, 467, (referred to as DWI).

    Google Scholar 

  2. Dürr, H.P. (1971).Nuovo Cimento,4, 187, (referred to as I).

    Google Scholar 

  3. Rayski, J. (1960).Acta Phys. Pol.,19, 409; Rodichev, V.I. (1961).Zhurn. Eksp. Teor. Fiz.,40, 1469, (in Russian);Soviet Physics JETP,13, 1029, (in English).

    Google Scholar 

  4. Dürr, H.P. and Winter, N.J. (1972).Nuovo Cimento,A7, 461, (referred to as DWII).

    Google Scholar 

  5. See e.g. Heisenberg, W. (1966).Introduction to the Unified Field Theory of Elementary Particles, (John Wiley, London); (1967).Einführung in die einheitliche Feldtheorie der Elementarteilchen, (Hirzel, Stuttgart), (German edition). This contains a bibliography of the earlier work. Also for a short review see Dürr, H.P. (1966).Acta Phys. Austr., Suppl. III, 3.

    Google Scholar 

  6. Mitter, H. (1964).Nuovo Cimento,32, 1789.

    Google Scholar 

  7. Saller, H. (1972).Nuovo Cimento,A7, 779; Kinzelbach, W. (1971). (Diploma Thesis), (University of Munich), (to be published).

    Google Scholar 

  8. Zimmermann, W. (1958).Nuovo Cimento,10, 597; (1967).Comm. Math. Phys.,6, 161; (1968).Comm. Math. Phys.,8, 66.

    Google Scholar 

  9. Wilson, K.G. (1969).Phys. Rev.,179, 1499.

    Google Scholar 

  10. Utiyama, R. (1956).Phys. Rev.,101, 1597.

    Google Scholar 

  11. Kibble, T. W. B. (1961).J. Math. Phys.,2, 212.

    Google Scholar 

  12. Weyl, H. (1929).Z. Phys.,56, 330; Fock, V. and Ivanenko, D. (1929).Z. Phys.,54, 789; Fock, V. (1929).Z. Phys.,57, 261.

    Google Scholar 

  13. Cartan, E. (1922).C.R. Acad. Sci.,174, 593; (1923).Ann. Ecole Norm. Sup. (3),40, 325; (1924).Ann. Ecole Norm. Sup. (3),41, 1; (1925).Ann. Ecole Norm. Sup. (3),42, 17; (Cont.) Hehl, F.W. (August 1970).Spin und Torsion in der allegemeinen Relativitätstheorie, (Habilitationsschrift), (Tech. Univ. Clausthal). This contains an extensive bibliography on torsion. Schmutzer, E. (1968).Relativistische Physik, (Teübner, Leipzig).

    Google Scholar 

  14. Ricci, G. (1895).Mem. Accad. Lincei,2, 276; Schouten, J.A. (1954).Ricci-Calculus, (Springer Verlag, Berlin-Gottingen-Heidelberg).

    Google Scholar 

  15. Hayashi, K. (1967).Prog. Theor. Phys.,38, 491; (1968).Prog. Theor. Phys.,39, 494; (1973).Gen. Rel. Grav.,4, 1.

    Google Scholar 

  16. Dürr, H.P. (1961).Z. Naturforsch.,A16, 327.

    Google Scholar 

  17. Gupta, S.M. (1952).Proc. Roy. Soc.,A65, 608; (1954).Phys. Rev.,96, 1683; (1957).Rev. Mod. Phys.,29, 337; Thirring, W. (1959).Fortschr. d. Phys.,7, 97; Feynman, R.P. (1963).Acta. Phys. Polon.,24, 697; DeWitt, B.S. (1967).Phys. Rev.,162, 1195, 1234; (1968).Phys. Rev.,171, 1834; Mandelstam, S. (1968).Phys. Rev.,173, 1604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dürr, H.P. Poincaré gauge invariant spinor theory and the gravitational field. II. Gen Relat Gravit 4, 29–52 (1973). https://doi.org/10.1007/BF00769759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769759

Keywords

Navigation