Skip to main content
Log in

The strength of Einstein's equations

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The strength of Einstein's empty-space field equations is computed anew and shown to be equal to the amount of initial data required for a local solution of the equations. This same amount of initial data is shown to be precisely that required for a set of 16 unknown first-order differential equations containing 10 field variables and having six identities of second order. The 10 field variables must be functions of second order in the metric coefficients. The 16 field equationsC αβμσ,α = 0 whereC αβμσ is Weyl's conformal tensor, are shown to have the same properties as those of the unknown equations, suggesting thatC αβμσ = 0 is a satisfactory local first-order formulation of Einstein's second-order empty-space field equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A. (1955).The Meaning of Relativity (4th ed., Princeton University Press, Princeton N.J.).

    Google Scholar 

  2. Penney, R. (1965).J. Math. Phys. 6, 1607.

    Google Scholar 

  3. Hoenselaers, C. (1977).Prog. Theor. Phys. 58, 1185.

    Google Scholar 

  4. Burman, R. (1977).Czech. J. Pkys. B 27, 113.

    Google Scholar 

  5. Murphy, G. L. (1979).Int. J. Theor. Phys. 18, 323.

    Google Scholar 

  6. Mariwalla, K. H. (1974).J. Math. Phys. 15, 468.

    Google Scholar 

  7. Schutz, B. F. (1975).J. Math. Phys. 16, 855.

    Google Scholar 

  8. Matthews, N. F. J. (1987).J. Math. Phys. 28, 810.

    Google Scholar 

  9. Weinberg, S. (1972).Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York).

    Google Scholar 

  10. Adler, R., Bazin, M., and Schiffer, M. (1975).Introduction to General Relativity (2nd. ed., McGraw-Hill, New York).

    Google Scholar 

  11. Eisenhart, L. P. (1926).Riemannian Geometry (Princeton University Press, Princeton N.J.).

    Google Scholar 

  12. Lichnerowicz, A. (1967).Relativistic Hydrodynamics and Magnetohydrodynamics (W. A. Benjamin, New York).

    Google Scholar 

  13. Hawking, S. W. (1966).Astrophys. J. 145, 544.

    Google Scholar 

  14. Campbell, W. B., and Morgan, T. A. (1971).Physica 53, 264.

    Google Scholar 

  15. Campbell, W. B., and Morgan, T. A. (1976).Am. J. Phys. 44, 356.

    Google Scholar 

  16. Campbell, W. B., Macek, J., and Morgan, T. A. (1977).Phys. Rev. D 15, 2156.

    Google Scholar 

  17. Obata, T., and Chiba, J. (1979).Gen. Rel. Grav. 10, 547.

    Google Scholar 

  18. Obata, T., Oshima, H., and Chiba, J. (1979).Gen. Rel. Grav. 13, 313.

    Google Scholar 

  19. Drew, M. S., and Gegenberg, J. D. (1980).Nuovo Cimento A60, 41.

    Google Scholar 

  20. Dymnikova, I. G. (1976).Astro. Space Sci. 39, L25.

    Google Scholar 

  21. Novello, M. (1977).Phys. Lett. A61, 441.

    Google Scholar 

  22. Tchrakian, D. H. (1975).Gen. Rel. Grav. 6, 151.

    Google Scholar 

  23. Lesche, B., and Som, M. M. (1985).Phys. Lett. A107, 72.

    Google Scholar 

  24. Lichnerowicz, A. (1960).Ann. Mat. Pura Appl. 50, 1.

    Google Scholar 

  25. Anderson, J. L. (1967).Principles of Relativity Physics (Academic Press, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, N.F.J. The strength of Einstein's equations. Gen Relat Gravit 24, 17–33 (1992). https://doi.org/10.1007/BF00756871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756871

Keywords

Navigation