Skip to main content
Log in

Thermal decomposition and electrical conductivity of oxide cathode emission materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermal decomposition and electrical conductivity of oxide cathode emission materials used for cathode ray tubes (CRTs) have been studied under different heat treatment conditions for commercial sprayed cathode systems based on barium-strontium carbonate precursors. Conversion of the carbonate precursor commenced at temperatures above approximately 700 K in vacuum, evidenced by increases in conductivity, however, the rate of the conversion reaction increased dramatically as the temperature was increased. The corresponding chemical and microstructural changes have also been investigated by thermo-gravimetric analysis (TGA) and scanning electron microscopy (SEM), with multiple decomposition stages identified corresponding to the conversion of the carbonate precursor and separate activation steps associated with the reaction of barium oxide with the Mg and Al activating agents in the nickel cathode substrate. © 2000 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. GÄrtner and H. Lydtin, Cathode Including a Solid Body, European Patent No. 0 560 436 B1 (1993).

  2. J. R. Young, J. Appl. Phys. 23 (1952) 1129.

    Google Scholar 

  3. G. Dearnaley, Thin Solid Films 3 (1969) 161.

    Google Scholar 

  4. A. Shih and G. A. Haas, Appl. Surf. Sci. 8 (1981) 125.

    Google Scholar 

  5. G. A. Haas and A. Shih, ibid. 8 (1981) 145.

    Google Scholar 

  6. S. N. B. Hodgson, A. P. Baker, C. J. Goodhand, P. A. M. Van Der Heide, T. Lee, A. K. Ray and A. N. H. Al-Ajili, ibid. 146 (1999) 79.

    Google Scholar 

  7. T. Aida, H. Tanuda, S. Sasaki, T. Yaguchi, S. Taguchi, N. Koganezawa and Y. Nonaka, J. Appl. Phys. 74 (1993) 6482.

    Google Scholar 

  8. F. Rosebury, in ``Handbook of Electron Tube and Vacuum Techniques'', (Addison-Wesley Publishing Company, Reading, MA., 1965) p. 96.

    Google Scholar 

  9. T. N. Chin, R. W. Cohen and M. D. Coutts, RCA Review 35 (1974) 520.

    Google Scholar 

  10. J. A. N. Goncalves, G. M. Sadonato and C. M. Neto, Vacuum 49 (1998) 9.

    Google Scholar 

  11. D. A. Wright, Br. J. Appl. Phys. 1 (1950) 150.

    Google Scholar 

  12. J. F. Waymouth, J. Appl. Phys. 22 (1951) 80.

    Google Scholar 

  13. G. S. Higginson, Br. J. Appl. Phys. 9 (1958) 106.

    Google Scholar 

  14. W. H. Kohl, in ``Handbook of Materials and Techniques for Vacuum Devices'', (Reinhold Publishing Corporation, New York 1967) p. 475.

    Google Scholar 

  15. G. A. Haas, A. Shih and R. E. Thomas, Appl. Surf. Sci. 2 (1979) 293.

    Google Scholar 

  16. I. Arvanitidis, D. Sichen and S. Seetharaman, Light Met. (1996) 1191.

  17. T. Ohira, H. Teramoto, M. Saito and T. Shinjo, Appl. Surf. Sci. 146 (1999) 47.

    Google Scholar 

  18. A. Shih, J. E. Yater and R. Abrams, ibid. 146 (1999) 1.

    Google Scholar 

  19. D. Shafer and J. T. Turnbull, ibid. 8 (1981) 225.

    Google Scholar 

  20. G. Hermann and S. Wagener, in ``The Oxide Coated Cathode, Vol. 1'' (Chapman & Hall, London, 1951) p. 54.

    Google Scholar 

  21. E. S. Riittner, Philips Res. Rep. 9 (1953) 184.

    Google Scholar 

  22. R. C. Hughes, P. P. Coppola and H. T. Evans, J. Appl. Phys. 23 (1952) 635.

    Google Scholar 

  23. R. Loosjes and H. J. Vink, Philips Res. Rep. 4 (1949) 449.

    Google Scholar 

  24. R. Forman, Phys. Rev. 96 (1954) 1479.

    Google Scholar 

  25. T. B. Tomlinson, J. Appl. Phys. 52 (1954) 720.

    Google Scholar 

  26. E. B. Hensley, ibid. 27 (1956) 286.

    Google Scholar 

  27. W. Grattidge and H. John, ibid. 23 (1952) 1145.

    Google Scholar 

  28. E. B. Hensley, ibid. 23 (1952) 1122.

    Google Scholar 

  29. M. M. El-Desoky, M. Y. Hassaan and M. H. Elkottamy, J. Mater. Sci. 9 (1998) 447.

    Google Scholar 

  30. H. Allison and H. Samelson, J. Appl. Phys. 30/9 (1959) 1419.

    Google Scholar 

  31. C. Hughes and P. P. Coppola, Phys. Rev. 88 (1952) 364.

    Google Scholar 

  32. N. B. Hannay, D. Macnair and A. H. White, J. Appl. Phys. 20 (1949) 669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ajili, A.N.H., Ray, A.K., Travis, J.R. et al. Thermal decomposition and electrical conductivity of oxide cathode emission materials. Journal of Materials Science: Materials in Electronics 11, 489–495 (2000). https://doi.org/10.1023/A:1008916501674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008916501674

Keywords

Navigation