Skip to main content
Log in

The regulation of phosphorylation of a specific protein in synaptosomal fractions fromDrosophila heads: The effects of light and two visual mutants

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Protein IV from synaptosomal fractions ofDrosophila heads is phosphorylatedin vitro by an endogenous cyclic adenosine monophosphate (cAMP)-dependent protein kinase. Thein vivo phosphorylation of this protein is affected by light.

  2. 2.

    Two visual mutants,tan andstoned, exhibit altered levels ofin vivo phosphorylation of protein IV. Thetan strain shows depressedin vivo levels of phosphorylation of protein IV, whereasstoned shows an increase in thein vivo level of phosphorylation of this same protein.

  3. 3.

    Protein D is phosphorylatedin vitro by an endogenous Ca2+/calmodulindependent protein kinase and has a molecular weight identical to that of protein IV. Thestoned mutant strain shows an increase in thein vivo level of phosphorylation of protein D.

  4. 4.

    The data presented here suggest that the phosphorylation of protein IV, and perhaps D, may play a role in the early processing of visual information in the fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin, E. E., and Newburgh, R. W. (1975). Phosphoprotein phosphatases in the central nervous system ofManduca sexta.Biochim Biophys. Acta 377381–388.

    Google Scholar 

  • Castellucci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C., and Greengard, P. (1980). Intracellular injection of the catalytic subunit of cAMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization inAplysia.Proc. Natl. Acad. Sci. USA 777492–7496.

    Google Scholar 

  • De Lorenzo, R. J., Freedman, S. D., Yohe, W. B., and Maurer, S. C. (1979). Stimulation of Ca++-dependent neurotransmitter release and presynaptic terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles.Proc. Natl. Acad. Sci. USA 761838–1842.

    Google Scholar 

  • Forn, J., and Greengard, P. (1978). Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices.Proc. Natl. Acad. Sci. USA 755195–5199.

    Google Scholar 

  • Greengard, P. (1976). Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic action of neurotransmitters.Nature 260101–108.

    Google Scholar 

  • Grigliatti, T. A., Hall, L., Rosenbluth, R., and Suzuki, D. T. (1973). Temperature-sensitive mutations inDrosophila melanogaster. XIV. A selection of immobile adults.Mol. Gen. Genet. 120107–114.

    Google Scholar 

  • Hotta, Y., and Benzer, S. (1969). Abnormal electroretinograms in visual mutants ofDrosophila.Nature 222354–356.

    Google Scholar 

  • Huttner, W. B., and Greengard, P. (1979). Multiple phosphorylation sites in protein I and their differential regulation by cAMP and calcium.Proc. Natl. Acad. Sci. USA 765402–5406.

    Google Scholar 

  • Kelly, L. E. (1981). The regulation of protein phosphorylation in synaptosomal fractions fromDrosophila heads: The role of cyclic adenosine monophosphate and calcium/calmodulin.Comp. Biochem. Physiol. 69861–67.

    Google Scholar 

  • Kelly, L. E. (1983). An altered electroretinogram transient associated with an unusual jump response in a mutant ofDrosophila.Cell. Mol. Neurobiol. 3143–149.

    Google Scholar 

  • Klein, M., and Kandel, E. R. (1980). Mechanism of calcium current modulation underlying facilitation and behavioral sensitization inAplysia.Proc. Natl. Acad. Sci. USA 776912–6916.

    Google Scholar 

  • Klemm, N. (1976). Histochemistry of putative transmitter substances in the insect brain.Prog. Neurobiol. 799–169.

    Google Scholar 

  • Konopka, R. J. (1972). Abnormal concentrations of dopamine in aDrosophila mutant.Nature 239281–282.

    Google Scholar 

  • Kuo, J. F., Wyatt, G. R., and Greengard, P. (1971). Cyclic nucleotide-dependent protein kinases. IX Partial purification and some properties of guanosine 3′,5′-monophosphate-dependent and adenosine 3′,5′-monophosphate-dependent protein kinases from various tissues and species of arthropoda.J. Biol. Chem. 2467159–7167.

    Google Scholar 

  • Lindsley, D., and Grell, E. H. (1967). Genetic variations ofDrosophila melanogaster. Carnegie Institution, Washington, D.C.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265–275.

    Google Scholar 

  • Pak, W. L., Grossfield, J., and White, N. V. (1969). Non-phototactic mutants in a study of vision ofDrosophila.Nature 222351–354.

    Google Scholar 

  • Pellmar, T. C. (1981). Ionic mechanism of a voltage-dependent current elicited by cyclic AMP.Cell. Mol. Neurobiol. 187–97.

    Google Scholar 

  • Yamanaka, M. K., and Kelly, L. E. (1981). A calcium/calmodulin-dependent cyclic adenosine monophosphate phosphodiesterase fromDrosophila heads.Biochim Biophys. Acta 674277–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, L.E. The regulation of phosphorylation of a specific protein in synaptosomal fractions fromDrosophila heads: The effects of light and two visual mutants. Cell Mol Neurobiol 3, 127–141 (1983). https://doi.org/10.1007/BF00735277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735277

Key words

Navigation