Skip to main content
Log in

The Order of Exposure of Tau to Signal Transduction Kinases Alters the Generation of “AD-Like” Phosphoepitopes

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The individual and sequential influence of protein kinase C (PKC), protein kinase A (PKA) and mitogen-activated protein kinase (MAP kinase) on human brain tau was examined.

2. A range of PKC concentrations generated certain phosphoepitopes common with paired helical filaments. These epitopes were masked by higher PKC concentrations, suggesting the presence of multiple tau phosphorylation sites for which PKC exhibited differing affinities and/or conformational alterations in tau induced by sequential PKC-mediated phosphorylation.

3. Prior phosphorylation by PKC enhanced the nature and extent of AD-like tau antigenicity generated by subsequent incubation with MAP kinase yet inhibited that generated by subsequent incubation with PKA.

4. Dephosphorylation of tau prior to incubation with kinases significantly altered the influence of individual and multiple kinase incubation on tau antigenicity in a site-specific manner, indicating that prior in situ phosphorylation events markedly influenced subsequent cell-free phosphorylation.

5. In addition to considerations of the potential impact of tau phosphorylation by individual kinases, these findings extend previous studies which indicate that tau antigenicity, and, presumably, its behavior in situ, is influenced by the sequential and convergent influences of multiple kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arioka, M., Tsukamoto, M., Ishiguro, K., Kato, R., Sato, K., Imahori, K., and Uchida, T. (1993). Tau protein kinase-1 is involved in the regulation of the normal phosphorylation state of tau protein. J. Neurochem. 60:461–468.

    Google Scholar 

  • Baudier, J., and Cole, R. D. (1987). Phosphorylation of tau proteins to a state like that in Alzheimer's brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J. Biol. Chem. 262:17577–17583.

    Google Scholar 

  • Baudier, J., Lee, S.-H., and Cole, R. D. (1987). Separation of the different microtubule-associated tau proteins from bovine brain and their mode 1 phosphorylation by Ca2+/phospholipid-dependent protein kinase C. J. Biol. Chem. 262:17584–17590.

    Google Scholar 

  • Baumann, K., Mandelkow, E.-M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336:417–424.

    Google Scholar 

  • Biemat, J., Mandelkow, E.-M., and Schroter, C. (1992). The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule-binding region. EMBO J. 11:1593–1597.

    Google Scholar 

  • Blanchard, B. J., Raghunandan, R. D., Roder, H. M., and Ingram, V. M. (1994). Hyperphosphorylation of human tau by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA: Relation to Alzheimer's disease. Biochem. Biophys. Res. Commun. 200:187–194.

    Google Scholar 

  • Brambett, G. T., Goedert, M., Jakes, R., Merrick, S. E., Trojanowski, J. Q., and Lee, V. M.-Y. (1993). Abnormal tau phosphorylation at ser-396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099.

    Google Scholar 

  • Boyce, J. J., and Shea, T. B. (1997). Phosphorylation events mediated by protein kinase Cα and ε participate in regulation of tau steady-state levels and generation of certain “Alzheimer-like” phospho-epitopes. Int. J. Dev. Neurosci. 15:295–307.

    Google Scholar 

  • Cressman, C. M., and Shea, T. B. (1995). Hyperphosphorylation of tau and filopodial retraction following microinjection of protein kinase C catalytic subunits. J. Neurosci. Res. 42:648–656.

    Google Scholar 

  • Cressman, C. M., Mercken, M. M., and Shea, T. B. (1995). Alteration in tau antigenicity and electrophoretic migration by PKC under cell-free conditions. Neurosci. Res. Commun. 17:61–64.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Six, J., Lubke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.-Y. (1993a). The abnormal phosphorylation of tau proteins at ser-202 in Alzheimer's disease recapitulates phosphorylation during development. Proc. Natl. Acad. Sci. USA. 90:5066–5070.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Six, J., Lubke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.-Y. (1993b). The abnormal phosphorylation of tau proteins at ser-202 in Alzheimer's disease recapitulates phosphorylation during development. Proc. Natl. Acad. Sci. USA 90:5066–5070.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Cohen, P., Vanmechelen, E., Vandermeeren, M., and Cras, P. (1994a). Epitope mapiated protein tau are dephosphorylated by protein phosphatase 2A-1. FEBS Lett. 312:95–99.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Cohen, P., Vanmechelen, E., Vandermeeren, M., and Cras, P. (1994b). Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: Identification of phosphorylation sites in tau protein. Biochem. J. 301:871–877.

    Google Scholar 

  • Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P., and Anderton, B. H. (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localization of the kinase. Neurosci. Lett. 147:58–62.

    Google Scholar 

  • Hollingsworth, E. B., Ukena, D., and Daly, J. W. (1986). The protein kinase C activator phorbol-12myristate-13-acetate enhances cyclic AMP accumulation in pheochromocytoma cells. FEBS Lett. 196:131–134.

    Google Scholar 

  • Kobayashi, S., Ishiguro, K., Omori, A., Takamatsu, M., Arioka, M., Imahora, K., and Uchida, T. (1993). A cdc-related kinase PSSALRE/cdk5 is homologous with the 30kDa subunit of tau protein kinase-1, a proline-directed kinase associated with microtubules. FEBS Lett. 335:171–175.

    Google Scholar 

  • Kosik, K. S., and Greenberg, S. M. (1994). Tau protein and Alzheimer's disease. In Terry, R. D., Katzman, R., and Bick, K. L. (eds.), Alzheimer's Disease, Raven Press, New York, pp. 335–344.

    Google Scholar 

  • Lang, E., and Otvos, L. (1992). A serine-proline change in the Alzheimer's disease-associated epitope Tau-2 results in altered secondary structure, but phosphorylation overcomes the conformational gap. Biochem. Biophys. Res. Commun. 188:162–169.

    Google Scholar 

  • Latimer, D. A., Gallo, J.-M., Lovestone, S., Miller, C. C. J., Reynolds, C. H., Marquardt, B., Stable, S., Woodgett, J. R., and Anderton, B. H., (1995). Stimulation of MAP kinase by v-raf transformation of fibroblasts fails to induce hyperphosphorylation of transfected tau. FEBS LETT. 365:42–46.

    Google Scholar 

  • Ledesma, M. D., Correas, L., Avila, J., and Diaz-Nido, J. (1992). Implication of brain cdc2 and MPA kinases in the phosphorylation of tau protein in Alzheimer's disease. FEBS Lett. 308:218–224.

    Google Scholar 

  • Liu, W.-K., Moore, W. T., Williams, R. T., Hall, F. L., and Yen, S.-H. (1993). Application of synthetic phospho-and unphospho-peptides to identify phosphorylation sites in a subregion of the tau molecules, which is modified in Alzheimer's disease. J. Neurosci. Res. 34:371–376.

    Google Scholar 

  • Lu, W., Soria, J. P., and Wood, J. G. (1993). p44mpk MAP kinase induces Alzheimer type alterations in tau function and in primary hippocampal neurons. J. Neurosci. Res. 35:439–444.

    Google Scholar 

  • Mandelkow, E.-M., Drewes, G., Biernat, J., Gustke, N., Van Lint, J., Vandenheede, J. R., and Mandelkow, E. (1992). Glycogen synthase kinase 3 and the Alzheimer's disease-like state of microtubule-associated protein tau. FEBS Lett. 314:315–321.

    Google Scholar 

  • Mandelkow, E.-M., Biernat, J., Drewes, G., Gustke, N., Trinczek, B., and Mandelkow, E. (1995). Tau domains, phosphorylation, and interactions with microtubules. Neurobiol. Aging 16:355–362.

    Google Scholar 

  • Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Titani, K., and Ihara, Y. (1995). Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem. 270:823–829.

    Google Scholar 

  • Mulot, S. F. C., Hughes, K., Woodgett, J. R., Anderton, B. H., and Hanger, D. P. (1994). PHF-tau from Alzheimer's brain comprises four species on SDS-PAGE which can be mimicked by in vitro phosphorylation of human brain tau by glycogen synthase kinase-3β. FEBS Lett. 349:359–364.

    Google Scholar 

  • Paudel, H. K., Lew, J., Ali, Z., and Wang, J. H. (1993). Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer's paired helical filaments. J. Biol. Chem. 268:23512–23518.

    Google Scholar 

  • Pelech, S. L. (1995). Networking with proline-directed protein kinases implicated in tau phosphorylation. Neurobiol. Aging 16:247–261.

    Google Scholar 

  • Pelech, S. L., and Sangria, J. S. (1992). Mitogen-activated protein kinases: Versatile transducers for cell signaling. Trends Biochem. Soc. 17:233–238.

    Google Scholar 

  • Peraldi, P., Frodin, M., Barnier, J. V., Calleja, V., Scimeca, J.-C., Filloux, C., Calothy, G., and Van Obberghen, E. (1995). Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEKI (MAP kinase or ERK kinase) and is inhibited by cAMP. FEBS Lett. 357:290–296.

    Google Scholar 

  • Pundreddy, S., and Shea, T. B. (1997). AD-like tau phosphorylation in human neuroblastoma cells following PKC hyperactivation is mediated by MAP kinase. Neurosci. Res. Commun. 21:173–177.

    Google Scholar 

  • Raghunandan, R., and Ingram, V. M. (1995). Hyperphosphorylation of the cytoskeletal protein tau by the MAP-kinase PK40erk: Regulation by prior phosphorylation with cAMP-dependent protein kinase A. Biochem. Biophys. Res. Commun. 215:1056–1066.

    Google Scholar 

  • Sengupta, A., Wu, Q., Grundkle-Iqbal, I., Iqbal, K., and Singh, T. J. (1997). Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol. Cell. Biochem. 167:99–105.

    Google Scholar 

  • Shea, T. B. (1997). Phosphatidyl serine alters tau antigenicity, phosphorylation, proteolysis and association with microtubules: Implication for tau function under normal and degenerative conditions. J. Neurosci. Res. 50:114–122.

    Google Scholar 

  • Shea, T. B., and Beermann, M. L. (1994). Respective roles of neurofilaments, microtubules, MAP1B and tau in the outgrowth and stabilization of axonal neurites. Mol. Biol. Cell. 5:863–875.

    Google Scholar 

  • Shea, T. B., Beermann, M. L., Nixon, R. A., and Fischer, I. (1992a). Microtubule-associated protein tau is required for axonal neurite elaboration by neuroblastoma cells. J. Neurosci. Res. 32:363–374.

    Google Scholar 

  • Shea, T. B., Beermann, M. L., Leli, U., and Nixon, R. A. (1992b). Opposing influences of protein kinase activities on neurite outgrowth in human neuroblastoma cells: Initiation by kinase A and restriction by kinase C. J. Neurosci. Res. 33:398–407.

    Google Scholar 

  • Shea, T. B., Spencer, M. J., Beerman, M. L., Cressman, C. M., and Nixon, R. A. (1996). Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: Involvement of calpain-mediated hydrolysis of protein kinase. C. J. Neurochem. 66:1539–1549.

    Google Scholar 

  • Singh, T. J., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. (1994). Modulation of GSK-3-catalyzed phosphorylation of microtuble-associated protein tau by non-proline-dependent protein kinases. FEBS Lett. 358:4–8.

    Google Scholar 

  • Singh, T. J., Haque, N., Grundke-Iqbal, I., and Iqbal, K. (1994b). Rapid Alzheimer-like phosphorylation of tau by the synergistic actions of non-proline dependent kinases and GSK-3. FEBS Lett. 358:267–272.

    Google Scholar 

  • Steiner, B., Mandelkow, E.-M., Biernat, J., Gustke, N., Meyer, H. E., Schmidt, B., Mieskes, G., Dreschsel, D., Kirschner, M. W., Goedert, M., and Mandelkow, E. (1990). Phosphorylation of microtubule-associated protein tau: Identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9:3539–3544.

    Google Scholar 

  • Szendrei, G. I., Lee, V. M.-Y., and Otvos, L. (1993). Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location. J. Neurosci. Res. 34:243–249.

    Google Scholar 

  • Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Rao, D., and Lee, V. M.-Y. (1993a). Altered tau and neurofilament proteins in neurodegenerative diseases: Diagnostic implications for Alzheimer's disease and Lewy body dementias. Brain Pathol. 3:45–54.

    Google Scholar 

  • Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Goedert, M., and Lee, V. M.-Y. (1993b). PHF tau (A68): From pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer's disease. Clin. Neurosci. 1:184–191.

    Google Scholar 

  • Vulliet, R., Halloran, S. M., Braun, R. K., Smith, A. J., and Lee, G. (1992). Proline-directed phosphorylation of human tau protein. J. Biol. Chem. 267:22570–22574.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, T.B., Cressman, C.M. The Order of Exposure of Tau to Signal Transduction Kinases Alters the Generation of “AD-Like” Phosphoepitopes. Cell Mol Neurobiol 19, 223–233 (1999). https://doi.org/10.1023/A:1006977127422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006977127422

Navigation