Skip to main content
Log in

Regulation of the Biosynthesis of Large Dense-Core Vesicles in Chromaffin Cells and Neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The proteins of large dense-core vesicles (LDV) in neuroendocrine tissues are well characterized. Secretory components comprise chromogranins and neuropeptides. Intrinsicmembrane proteins include cytochrome b-561, transporters, SV2, synaptotagmin, and sy-naptobrevin.

2. The effects of stimulation and of second messengers on the biosynthesis of LDV have been studied in detail.

3. Regulation of biosynthesis is complex. The cell can adapt to prolonged stimulation either by producing vesicles of normal size filled with a higher quantum of secretorypeptides or by forming larger vesicles. In addition, some components, e.g., enzymes, canbe upregulated specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anouar, Y., MacArthur, L., Cohen, J., Iacangelo, A. L., and Eiden, L. E. (1994). Identification of a TPA-responsive element mediating preferential transactivation of the galanin gene promoter in chromaffin cells. J. Biol. Chem. 269:6823–6831.

    Google Scholar 

  • Armstrong, R. C., and Montminy, M. R. (1993). Transsynaptic control of gene expression. Annu. Rev. Neurosci. 16:17–29.

    Google Scholar 

  • Banks, P., and Helle, K. (1965). The release of protein from the stimulated adrenal medulla. Biochem. J. 97:40c–41c.

    Google Scholar 

  • Baumert, M., Maycox, P. R., Navone, F., De Camilli, P., and Jahn, R. (1989). Synaptobrevin: An integral membrane protein of 18.000 daltons present in small synaptic vesicle of rat brain. EMBO J. 8:379–384.

    Google Scholar 

  • Bertini, L. T., and Kiss, J. Z. (1991). Hypophysiotrophic neurons are capable of altering the ration of co-packaged neurohormones. Neuroscience 42:237–244.

    Google Scholar 

  • Birch, N. P., Tracer, H. L., Hakes, D. J., and Loh, Y. P. (1991). Coordinate regulation of mRNA levels of proopiomelanocortin and the cacdidate processing enzymes PC2 and PC3, but not furin, in rat pituitary intermediate lobe. Biochem. Biophys. Res. Commun. 179:1311–1319.

    Google Scholar 

  • Blaschko, H., Comline, R. S., Schneider, F. H., Silver, M., and Smith, A. D. (1967). Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59.

    Google Scholar 

  • Bloomquist, B. T., Eipper, B. A., and Mains, R. E. (1991). Prohormone-converting enzymes: Regulation and evaluation of function using antisense RNA. Mol. Endocrinol. 5:2014–2024.

    Google Scholar 

  • Bondy, C. A., Whitnall, M. H., and Brady, L. S. (1989). Regulation of carboxypeptidase H gene expression in magnocellular neurons. Mol. Endocrinol. 3:2086–2092.

    Google Scholar 

  • Borsook, D., and Hyman, S. E. (1995). Proenkephalin gene regulation in the neuroendocrine hypothalamus: A model of gene regulation in the CNS. Am. J. Physiol. 269:E393–E408.

    Google Scholar 

  • Braks, J. A. M., and Martens, G. J. M. (1994). 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78:263–273.

    Google Scholar 

  • Chilcote, T. J., Galli, T., Mundigl, O., Edelmann, L., McPherson, P. S., Takei, K., and De Camilli, P. (1995). Cellubrevin and synaptobrevins: Similar subcellular localization and biochemical properties in PC12 cells. J. Cell Biol. 129:219–231.

    Google Scholar 

  • Cohn, D. V., Zangerle, R., Fischer-Colbrie, R., Chu, L. L. H., Elting, J. J., Hamilton, J. W., and Winkler, H. (1982). Similarity of secretory protein I from parathyroid gland to chromogranin A from adrenal medulla. Proc. Natl. Acad. Sci. USA 79:6056–6059.

    Google Scholar 

  • De Camilli, P., and Jahn, R. (1990). Pathways to regulated expcytosis in neurons. Annu. Rev. Physiol. 52:625–645.

    Google Scholar 

  • DeCristofaro, J. D., Weisinger, G., and LaGamma, E. F. (1993). Cholinergic regulation of rat preproenkephalin RNA in the adrenal medulla. Mol. Brain Res. 18:133–140.

    Google Scholar 

  • De Rijk, E. P. C. T., Jenks, B. G., and Wendelaar Bonga, S. E. (1990). Morphology of the pars intermedia and the melanophore stimulating cells in Xenopus laevis in relation to background adaption. Gen. Comp. Endocrinol. 79:74–82.

    Google Scholar 

  • Desnos, C., Laran, M. P., and Scherman, D. (1992). Regulation of the chromaffin granule catecholamine transporter in cultured bovine adrenal medullary cells: Stimulus-biosynthesis coupling. J. Neurochem. 59:2105–2112.

    Google Scholar 

  • Desnos, C., Laran, M.-P., Langley, K., Aunis, D., and Henry, J.-P. (1995). Long term stimulation changes the vesicular monoamine transporter content of chromaffin granules. J. Biol. Chem. 270:16030–16038.

    Google Scholar 

  • Egger, C., Kirchmair, R., Kapelari, S., Fischer-Colbrie, R., Hogue-Angeletti, R., and Winkler, H. (1994). Bovine posterior pituitary: Presence of p65 (synaptotagmin), PC1, PC2 and secretoneurin in large dense core vesicles. Neuroendocrinology 59:169–175.

    Google Scholar 

  • Eiden, L. E., and Hotchkiss, A. J. (1983). Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells. Neuropeptides 4:1–9.

    Google Scholar 

  • Eiden, L. E., Giraud, P., Dave, J. R., Hotchkiss, A. J., and Affolter, H.-U. (1984). Nicotinic receptor stimulation activates enkephalin release and biosynthesis in adrenal chromaffin cells. Nature 312:661–663.

    Google Scholar 

  • Eipper, B. A., Stoffers, D. A., and Mains, R. E. (1992). The biosynthesis of neuropeptides: peptide a-amidation. Annu. Rev. Neurosci. 15:57–85.

    Google Scholar 

  • Fischer-Colbrie, R., Eskay, R. L., Eiden, L. E., and Maas, D. (1992). Transsynaptic regulation of galanin, neurotensin, and substance P in the adrenal medulla: Combinatorial control by second-messenger signaling pathways. J. Neurochem. 59:780–783.

    Google Scholar 

  • Fischer-Colbrie, R., and Frischenschlager, I. (1985). Immunological characterization of secretory proteins of chromaffin granules: Chromogranins A, chromogranins B and enkephalin-containing peptides. J. Neurochem. 44:1854–1861.

    Google Scholar 

  • Fischer-Colbrie, R., Zangerle, R., Frischenschlager, I., Weber, A., and Winkler, H. (1984). Isolation and immunological characterization of a glycoprotein from adrenal chromaffin granules. J. Neurochem. 42:1008–1016.

    Google Scholar 

  • Fischer-Colbrie, R., Iacangelo, A., and Eiden, L. E. (1988). Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla. Proc. Natl. Acad. Sci. USA 85:3240–3244.

    Google Scholar 

  • Fischer-Colbrie, R., Gutierrez, J., Hsu, C. M., Iacangelo, A., and Eiden, L. E. (1990). Sequence analysis, tissue distribution and regulation by cell depolarization, and second messengers of bovine secretogranin II (chromogranin C) mRNA. J. Biol. Chem. 265:9208–9213.

    Google Scholar 

  • Fischer-Colbrie, R., Laslop, A., and Kirchmair, R. (1995). Secretogranin II: Molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Progr. Neurobiol. 46:49–70.

    Google Scholar 

  • Foran, P., Lawrence, G., and Dolly, J. O. (1995). Blockade by botulinum neurotoxin b of catecholamine release from adrenochromaffin cells correlates with its cleavage of synaptobrevin and a homologue present on the granules. Biochemistry 34:5494–5503.

    Google Scholar 

  • Fournier, S., and Trifaró, J.-M. (1988). A similar calmodulin-binding protein expressed in chromaffin, synaptic, and neurohypophyseal secretory vesicles. J. Neurochem. 50:27–37.

    Google Scholar 

  • Fricker, L. D. (1988). Carboxypeptidase E. Annu. Rev. Physiol. 50:309–321.

    Google Scholar 

  • Fricker, L. D., Reaves, B. J., Das, B., and Dannies, P. S. (1990a). Comparison of the regulation of carboxypeptidase E and prolactin in GH4C1 cells, a rat pituitary cell line. Neuroendocrinology 51:658–663.

    Google Scholar 

  • Fricker, L. D., Rigual, R. J., Diliberto, E. J., Jr., and Viveros, O. H. (1990b). Reflex splanchnic nerve stimulation increases levels of carboxypeptidase E mRNA and enzymatic activity in the rat adrenal medulla. J. Neurochem. 55:461–467.

    Google Scholar 

  • Gagnon, C., Pfaller, W., Fischer, W. M., Schwab, M., Winkler, H., and Thoenen, H. (1977). Increased specific activity of membrane-bound dopamine β-hydroxylase in chromaffin granules after reserpine treatment. J. Neurochem. 28:853–856.

    Google Scholar 

  • Gelawi, F., Laslop, A., Schägger, H., Ludwig, J., Haywood, J., and Apps, D. (1996). Chromaffin granule membrane glycoprotein IV is identical with Ac45, a membrane-integral subunit of the granule's H+-ATPase. Neurosci. Lett. 219:13–16.

    Google Scholar 

  • Goodman, R. H. (1990). Regulation of neuropeptide gene expression. Annu. Rev. Neurosci. 13:111–127.

    Google Scholar 

  • Hieber, A. D., and Christie, D. L. (1993). Characterization of glycoprotein II from bovine adrenal medullary chromaffin granules. Identification of components representing the secretory vesicle counterparts of the lysosomal-associated membrane glycoproteins (lamp-1 and lamp-2). J. Biol. Chem. 268:11073–11078.

    Google Scholar 

  • Higuchi, H., Iwasa, A., Yoshida, H., and Miki, N. (1990). Long lasting increase in neuropeptide Y gene expression in rat adrenal gland with reserpine treatment: Positive regulation of transsynaptic activation and membrane depolarization. Mol. Pharmacol. 38:614–623.

    Google Scholar 

  • Hillarp, N. Å. (1958). Enzymiy systems involving adenosinephosphatases in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta Physiol. Scand. 42:144–165.

    Google Scholar 

  • Hinks, G. L., Poat, J. A., and Hughes, J. (1995). Changes in hypothalamic cholecystokininA and cholecystokininB receptor subtypes and associated neuropeptide expression in response to salt-stress in the rat and mouse. Neuroscience 68:765–781.

    Google Scholar 

  • Hiremagalur, B., and Sabban, E. L. (1995). Nicotine elicits changes in expression of adrenal catecholamine biosynthetic enzymes, neuropeptide Y and immediate early genes by injection but not continuous administration. Mol. Brain Res. 32:109–115.

    Google Scholar 

  • Höfle, G., Weiler, R., Fischer-Colbrie, R., Humpel, C., Laslop, A., Wohlfarter, T., Hogue-Angeletti, R., Saria, A., Fleming, P. J., and Winkler, H. (1991). Stimulation of rat adrenal medulla can induce differential changes in the peptide and mRNA levels of chromogranins, neuropeptides and other constituents of chromaffin granules. Regul. Pept. 32:321–331.

    Google Scholar 

  • Höhne-Zell, B., Ecker, A., Weller, U., and Gratzl, M. (1994). Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells. FEBS Lett. 355:131–134.

    Google Scholar 

  • Hökfelt, T., Zhang, X., and Wiesenfeld-Hallin, Z. (1994). Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 17:22–30.

    Google Scholar 

  • Holthuis, J. C. M., Jansen, E. J. R., Van Riel, M. C. H. M., and Martens, G. J. M. (1995). Molecular probing of the secretory pathway in peptide hormone-producing cells. J. Cell Sci. 108:3295–3305.

    Google Scholar 

  • Hook, V. Y. H., Eiden, L. E., and Pruss, R. M. (1985). Selective regulation of carboxypeptidase peptide hormone-processing enzyme during enkephalin biosynthesis in cultured bovine adrenomedullary chromaffin cells. J. Biol. Chem. 260:5991–5997.

    Google Scholar 

  • Iacangelo, A. L., and Eiden, L. E. (1995). Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul. Pept. 58:65–88.

    Google Scholar 

  • Iacangelo, A. L., Grimes, M., and Eiden, L. E. (1991). The bovine chromogranin A gene: Structural basis for hormone regulation and generation of biologically active peptides. Mol. Endocrinol. 5:1651–1660.

    Google Scholar 

  • Kanamatsu, T., Unsworth, C. D., Diliberto, E. J., Jr., Viveros, O. H., and Hong, J. S. (1986). Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla. Proc. Natl. Acad. Sci. USA 83:9245–9249.

    Google Scholar 

  • Kirshner, N., Sage, H. J., Smith, W. J., and Kirshner, A. G. (1967). Mechanisms of secretion from the adrenal medulla. 2. Release of catecholamines and storage vesicle protein in response to chemical stimulation. Mol. Pharmacol. 3:254–265.

    Google Scholar 

  • Kley, N., Loeffler, J. P., Pittius, C. W., and Höllt, V. (1986). Proenkephalin A gene expression in bovine adrenal chromaffin cells is regulated by changes in electrical activity. EMBO J. 5:967–970.

    Google Scholar 

  • Kley, N., Loeffler, J. P., Pittius, C. W., and Höllt, V. (1987). Involvement of ion channels in the induction of proenkephalin a gene expression by nicotine and cAMP in bovine chromaffin cells. J. Biol. Chem. 262:4083–4089.

    Google Scholar 

  • Klimaschweski, L., Kroesen, S., Eder, U., Leitner, B., and Fischer-Colbrie, R. (1996). Localization and regulation of the peptide secretoneurin after axotomy in the rater superior cerival ganglion. Eur. J. Neurosci. 8:1953–1964.

    Google Scholar 

  • Krejci, E., Gasnier, B., Botton, D., Isambert, M. F., Sagne, C., Gagnon, J., Massoulie, J., and Henry, J. P. (1993). Expression and regulation of the bovine vesicular monoamine transporter gene. FEBS Lett. 335:27–32.

    Google Scholar 

  • Kroesen, S., Marksteiner, J., Mahata, S. K., Mahata, M., Fischer-Colbrie, R., Saria, A., Kapeller, I., and Winkler, H. (1995). Effects of haloperidol, clozapine and citalopram on messenger RNA levels of chromogranins A and B and secretogranin II in various regions of rat brain. Neuroscience 69:881–891.

    Google Scholar 

  • Laslop, A., Wohlfarter, T., Fischer-Colbrie, R., Steiner, H. J., Humpel, C., Saria, A., Schmid, K. W., Sperk, G., and Winkler, H. (1989). Insulin hypoglycemia increases the levels of neuropeptide Y and calcitonin gene-related peptide, but not of chromogranins A and B in rat chromaffin granules. Reg. Pept. 26:191–202.

    Google Scholar 

  • Laslop, A., Mahata, S. K., Wolkersdorfer, M., Mahata, M., Srivastava, M., Seidah, N. G., Fischer-Colbrie, R., and Winkler, H. (1994a). Large dense-core vesicles in rat adrenal after reserpine: Levels of mRNAs of soluble and membrane-bound constituents in chromaffin and ganglion cells indicate a biosynthesis of vesicles with higher secretory quanta. J. Neurochem. 62:2448–2456.

    Google Scholar 

  • Laslop, A., Tschernitz, C., and Eiter, C. (1994b). Biosynthesis of proteins of large dense-core vesicles in rat PC12 cells: Regulation by forskolin and phorbol ester. Neuroscience 59:477–485.

    Google Scholar 

  • Leitner, B., Fischer-Colbrie, R., Scherzer, G., and Winkler, H. (1996). Secretogranin II: Relative amounts and processing to secretoneurin in various rat tissues. J. Neurochem. 66:1312–1317.

    Google Scholar 

  • Lightman, S. L., and Young, W. S., III (1987). Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat. J. Physiol. 394:23–39.

    Google Scholar 

  • Lowe, A. W., Madeddu, L., and Kelly, R. B. (1988). Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common. J. Cell Biol. 106:51–59.

    Google Scholar 

  • MacArthur, L., Koller, K. J., and Eiden, L. E. (1993). Enkephalin gene transcription in bovine chromaffin cells is regulated by calcium and protein kinase A signal transduction pathways: Identification of DNAse l-hypersensitive sites. Mol. Pharmacol. 44:545–551.

    Google Scholar 

  • Mahata, S. K., Mahata, M., Steiner, H.-J., Fischer-Colbrie, R., and Winkler, H. (1992a). In situ hybridization: mRNA levels of secretogranin II, neuropeptides and carboxypeptidase H in brains of salt-loaded and Brattleboro rats. Neuroscience 48:669–680.

    Google Scholar 

  • Mahata, S. K., Marksteiner, J., Sperk, G., Mahata, M., Gruber, B., Fischer-Colbrie, R., and Winkler, H. (1992b). Temporal lobe epilepsy of the rat: Differential expression of mRNAs of chromogranin B, secretogranin II, synaptin/synaptophysin and p65 in subfields of the hippocampus. Mol. Brain Res. 16:1–12.

    Google Scholar 

  • Mahata, S. K., Gruber, B., Mahata, M., Röder, C., Fischer-Colbrie, R., and Sperk, G. (1993a). Kainic acid seizures in the rat: Differential expression of chromogranin A, carboxypeptidase H and peptidylglycine a-amidating monooxigenase in subfields of the hippocampal formation. Acta Neuropathol. 86:590–595.

    Google Scholar 

  • Mahata, S. K., Mahata, M., Fischer-Colbrie, R., and Winkler, H. (1993b). In situ hybridization: mRNA levels of secretogranin II, VGF and peptidylglycine alpha-amidating monooxygenase in brain of salt-loaded rats. Histochemistry 99:287–293.

    Google Scholar 

  • Mahata, S. K., Mahata, M., Fischer-Colbrie, R., and Winkler, H. (1993c). Reserpine causes differential changes in the mRNA levels of chromogranin B, secretogranin II, carboxypeptidase H, alpha-amidating monooxygenase, the vesicular amine transporter and of synaptin/synaptophysin in rat brain. Mol. Brain Res. 19:83–92.

    Google Scholar 

  • Mahata, S. K., Mahata, M., Fischer-Colbrie, R., and Winkler, H. (1993d). Vesicle monoamine transporters 1 and 2: Differential distribution and regulation of their mRNAs in chromaffin and ganglion cells of rat adrenal medulla. Neurosci. Lett. 156:70–72.

    Google Scholar 

  • Marcinkiewicz, M., Fischer-Colbrie, R., Falgueyret, J. P., Benjannet, S., Seidah, N. G., Lazure, C., Winkler, H., and Chrétien, M. (1988). Two-dimensional immunoblotting analysis and immunocytochemical localization of the secretory polypeptide 7B2 in adrenal medulla. Neurosci. Lett. 95:81–87.

    Google Scholar 

  • Martin, S. K., Carroll, R., Benig, M., and Steiner, D. F. (1994). Regulation by glucose of the biosynthesis of PC2, PC3 and proinsulin in (ob/ob) mouse islets of Langerhans. FEBS Lett. 356:279–282.

    Google Scholar 

  • Meister, B., Cortés, R., Villar, M. J., Schalling, M., and Hökfelt, T. (1990a). Peptides and transmitter enzymes in hypothalamic magnocellular neurons after administration of hyperosmotic stimuli: Comparison between messenger RNA and peptide/protein levels. Cell Tissue Res. 260:279–297.

    Google Scholar 

  • Meister, B., Villar, M. J., Ceccatelli, S., and Hökfelt, T. (1990b). Localization of chemical messengers in magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei: An immunohistochemical study using experimental manipulations. Neuroscience 37:603–633.

    Google Scholar 

  • Naudon, L., Leroux-Nicollet, I., Raisman-Vozari, R., Botton, D., and Costentin, J. (1995). Time-course of modifications elicited by reserpine on the density and mRNA synthesis of the vesicular monoamine transporter, and on the density of the membrane dopamine uptake complex. Synapse 21:29–36.

    Google Scholar 

  • Navone, F., Di Dioia, G., Jahn, R., Browning, M., Greengard, P., and De Camilli, P. (1989). J. Cell Biol. 109:3425–3433.

    Google Scholar 

  • Nelson, N. (1992). Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100:109–124.

    Google Scholar 

  • Obendorf, D., Schwarzenbrunner, U., Fischer-Colbrie, R., Laslop, A., and Winkler, H. (1988). Immunological characterization of a membrane glycoprotein of chromaffin granules: Its presence in endocrine and exocrine tissues. Neuroscience 25:343–351.

    Google Scholar 

  • O'Connor, D. T. (1983). Chromogranin: Widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Reg. Pept. 6:263–280.

    Google Scholar 

  • Ottiger, H. P., Battenberg, E. F., Tsou, A. P., Bloom, F. E., and Sutcliffe, J. G. (1990). 1B1075: A brain-and pituitary-specific messenger RNA that encodes a novel chromogranin/secretograninlike component of intracellular vesicles. J. Neurosci. 10:3135–3147.

    Google Scholar 

  • Palmer, D. J., and Christie, D. L. (1990). The primary structure of glycoprotein III from bovine adrenal medullary chromaffin granules. Sequence similarity with human serum protein-40, 40 and rat Sertoli cell glycoprotein 2. J. Biol. Chem. 265:6617–6623.

    Google Scholar 

  • Papini, E., Rossetto, O., and Cutler, D. F. (1995). Vesicle-associated membrane protein (VAMP)/synaptobrevin-2 is associated with dense core secretory granules in PC12 neuroendocrine cells. J. Biol. Chem. 270:1332–1336.

    Google Scholar 

  • Pohl, T. M., Phillips, E., Song, K. Y., Gerdes, H. H., Huttner, W. B., and Rüther, U. (1990). The organisation of the mouse chromogranin B (secretogranin I) gene. FEBS Lett. 262:219–224.

    Google Scholar 

  • Pruss, R. M., Moskal, J. R., Eiden, L. E., and Beinfeld, M. C. (1985). Specific regulation of vasoactive intestinal polypeptide biosynthesis by phorbol ester in bovine chromaffin cells. Endocrinology 117:1020–1026.

    Google Scholar 

  • Rökaeus, Å., Pruss, R. M., and Eiden, L. E. (1990). Galanin gene expression in chromaffin cells is controlled by calcium and protein kinase signaling pathways. Endocrinology 127:3096–3102.

    Google Scholar 

  • Rosa, P., Hille, A., Lee, R. W. H., Zanini, A., De Camilli, P., and Huttner, W. B. (1985). Secretogranin I and II: Two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J. Cell Biol. 101:1999–2011.

    Google Scholar 

  • Rouillé, Y., Duguay, S. J., Lund, K., Furuta, M., Gong, Q. M., Lipkind, G., Oliva, A. A., Jr., Chan, S. J., and Steiner, D. F. (1995). Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: The subtilisin-like proprotein convertases. Front. Neuroendocrinol. 16:322–361.

    Google Scholar 

  • Scammell, J. G., Sumners, C., Reutter, M. A., Valentine, D. L., and Jones, L. C. (1995). Regulation of secretogranin II mRNA in rat neuronal cultures. Mol. Brain Res. 33:326–332.

    Google Scholar 

  • Schalling, M., Franco-Cereceda, A., Hemsén, A., Dagerlind, Å., Seroogy, K., Persson, H., Hökfelt, T., and Lundberg, J. M. (1991). Neuropeptide Y and catecholamine synthesizing enzymes and their mRNAs in rat sympathetic neurons and adrenal glands: Studies on expression, synthesis and axonal transport after pharmacological and experimental manipulations using hybridization techniques and radioimmunoassay. Neuroscience 41:753–766.

    Google Scholar 

  • Schilling, K., and Gratzl, M. (1988). Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles. FEBS Lett. 233:22–24.

    Google Scholar 

  • Schimmel, A., Bräunling, O., Rüther, U., Huttner, W. B., and Gerdes, H.-H. (1992). The organisation of the mouse secretogranin II gene. FEBS Lett. 314:375–380.

    Google Scholar 

  • Schmidle, T., Weiler, R., Desnos, C., Scherman, D., Fischer-Colbrie, R., Floor, E., and Winkler, H. (1991). Synaptin/synaptophysin, p65 and SV2: their presence in adrenal chromaffin granules and sympathetic large dense core vesicles. Biochim. Biophys. Acta 1060:251–256.

    Google Scholar 

  • Schneider, F. H., Smith, A. D., and Winkler, H. (1967). Secretion from the adrenal medulla: biochemical evidence for exocytosis. Br. J. Pharm. Chemother. 31:94–104.

    Google Scholar 

  • Schuldiner, S., Shirvan, A., and Linial, M. (1995). Vesicular neurotransmitter transporters: from bacteria to humans. Physiol. Rev. 75:369–392.

    Google Scholar 

  • Schultzberg, M., Lundberg, J. M., Hökfelt, T., Terenius, L., Brandt, J., Elde, R. P., and Goldstein, M. (1978). Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3:1169–1186.

    Google Scholar 

  • Schwarzenbrunner, U., Schmidle, T., Obendorf, D., Scherman, D., Hook, V., Fischer-Colbrie, R., and Winkler, H. (1990). Sympathetic axons and nerve terminals: The protein composition of small and large dense-core and of a third type of vesicles. Neuroscience 37:819–827.

    Google Scholar 

  • Sherman, T. G., Civelli, O., Douglass, J., Herbert, E., and Watson, S. J. (1986). Coordinate expression of hypothalamic pro-dynorphin and pro-vasopressin mRNAs with osmotic stimulation. Neuroendocrinology 44:222–228.

    Google Scholar 

  • Sietzen, M., Schober, M., Fischer-Colbrie, R., Scherman, D., Sperk, G., and Winkler, H. (1987). Rat adrenal medulla: Levels of chromogranins, enkephalins, dopamine β-hydroxylase and of the amine transporter are changed by nervous activity and hypophysectomy. Neuroscience 22:131–139.

    Google Scholar 

  • Sperk, G. (1994). Kainic acid seizures in the rat. Progr. Neurobiol. 42:1–32.

    Google Scholar 

  • Supek, F., Supekova, L., Mandiyan, S., Pan, Y. C. E., Nelson, H., and Nelson, N. (1994). A novel accessory subunit for vacuolar H+-ATPase from chromaffin granules. J. Biol. Chem. 269:24102–24106.

    Google Scholar 

  • Taljanidisz, J., Stewart, L., Smith, A. J., and Klinman, J. P. (1989). Structure of bovine adrenal dopamine β-monoxygenase, as deduced from cDNA and protein sequencing: evidence that the membranebound form of the enzyme is anchored by an uncleaved signal peptide. Biochemistry 28:10054–10061.

    Google Scholar 

  • Thiele, E. A., and Eipper, B. A. (1990). Effect of secretagogues on components of the secretory system in AtT-20 cells. Endocrinology 126:809–817.

    Google Scholar 

  • Thoenen, H. (1972). Comparison between the effect of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine. Pharmacol. Rev. 24:255–267.

    Google Scholar 

  • Thompson, M. E., Valentine, D. L., Strada, S. J., Wagner, J. A., and Scammell, J. G. (1994). Transcriptional regulation of secretogranin II and chromogranin B by cyclic AMP in a rat pheochromocytoma cell line. Mol. Pharmacol. 46:880–889.

    Google Scholar 

  • Tóth, I. E., and Hinson, J. P. (1995). Neuropeptides in the adrenal gland: Distribution, localization of receptors, and effects on steroid hormone synthesis. Endocrine Res. 21:39–51.

    Google Scholar 

  • Trani, E., Ciotti, T., Rinaldi, A. M., Canu, N., Ferri, G. L., Levi, A., and Possenti, R. (1995). Tissuespecific processing of the neuroendocrine protein VGF. J. Neurochem. 65:2441–2449.

    Google Scholar 

  • Tschernitz, C., Laslop, A., Eiter, C., Kroesen, S., and Winkler, H. (1995). Biosynthesis of large densecore vesicles in PC12 cells: Effects of depolarization and second messengers on the mRNA levels of their constituents. Mol. Brain Res. 31:131–140.

    Google Scholar 

  • Viveros, O. H., Diliberto, E. J., Hazum, E. J., and Chang, K. J. (1979). Opiate-like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines. Mol. Pharmacol. 16:1101–1108.

    Google Scholar 

  • Walch-Solimena, C., Takei, K., Marek, K. L., Midyett, K., Südhof, T. C., De Camilli, P., and Jahn, R. (1993). Synaptotagmin: A membrane constituent of neuropeptide-containing large dense-core vesicles. J. Neurosci. 13:3895–3903.

    Google Scholar 

  • Waschek, J. A., Pruss, R. M., Siegel, R. E., Eiden, L. E., Bader, M. F., and Aunis, D. (1987). Regulation of enkephalin, VIP, and chromogranin biosynthesis in actively secreting chromaffin cells. Ann. N.Y. Acad. Sci. USA 493:308–323.

    Google Scholar 

  • Weber, A., Westhead, E. W., and Winkler, H. (1983). Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla. Biochem. J. 210:789–794.

    Google Scholar 

  • Weiler, R., Marksteiner, J., Bellmann, R., Wohlfarter, T., Schober, M., Fischer-Colbrie, R., Sperk, G., and Winkler, H. (1990a). Chromogranins in rat brain: Characterization, topographical distribution and regulation of synthesis. Brain Res. 532:87–94.

    Google Scholar 

  • Weiler, R., Meyerson, G., Fischer-Colbrie, R., Laslop, A., Påhlman, S., Floor, E., and Winkler, H. (1990b). Divergent changes of chromogranin A/secretogranin II levels in differentiating human neuroblastoma cells. FEBS Lett. 265:27–29.

    Google Scholar 

  • Wilson, B. S., and Lloyd, R. V. (1984). Detection of chromogranin in neuroendocrine cells with a monoclonal antibody. Am. J. Pathol. 115:458–468.

    Google Scholar 

  • Winkler, H. (1976). The comoposition of adrenal chromaffin granules: An assessment of controversial results. Neuroscience 1:65–80.

    Google Scholar 

  • Winkler, H. (1996). The functional role of the chromogranins (chromogranin A and B, secretogranin II and 7B2). Wenner-Gren Symp. (in Press).

  • Winkler, H., and Fischer-Colbrie, R. (1990). Common membrane proteins of chromaffin granules, endocrine and synaptic vesicles: Properties, tissue distribution, membrane topography and regulation of synthesis. Neurochem. Int. 17:245–262.

    Google Scholar 

  • Winkler, H., and Fischer-Colbrie, R. (1992). The chromogranins A and B: The first 25 years and future perspectives. Neuroscience 49:497–528.

    Google Scholar 

  • Winkler, H., and Westhead, E. (1980). The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823.

    Google Scholar 

  • Winkler, H., Apps, D. K., and Fischer-Colbrie, R. (1986). The molecular function of adrenal chromaffin granules: Established facts and unresolved topics. Neuroscience 18:261–290.

    Google Scholar 

  • Wolkersdorfer, M., Egger, C., Laslop, A., and Fischer-Colbrie, R. (1996). Nicotine and prostaglandin E induce secretogranin II levels in bovine chromaffin cells. Mol. Brain Res. (in press).

  • Wu, H. J., Rozansky, D. J., Parmer, R. J., Gill, B. M., and O'Connor, D. T. (1991). Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression. J. Biol. Chem. 266:13130–13134.

    Google Scholar 

  • Young, W. S., III, Horváth, S., and Palkovits, M. (1990). The influences of hyperosmolarity and synaptic inputs on galanin and vasopressin expression in the hypothalamus. Neuroscience 39:115–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, H., Fischer-Colbrie, R. Regulation of the Biosynthesis of Large Dense-Core Vesicles in Chromaffin Cells and Neurons. Cell Mol Neurobiol 18, 193–209 (1998). https://doi.org/10.1023/A:1022516919932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022516919932

Navigation