Skip to main content
Log in

Self-activation of catalyst and functionalization of metal surfaces

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Why can solid surfaces promote a variety of chemical reactions? We supposed that active sites or active compounds are formed over the catalyst surface during catalysis or in pretreatment. Three topics are discussed from this viewpoint in this review. The first topic is an activation of inactive MoOx film to super-active olefin metathesis catalyst, where Mo=CHR sites are prepared on MoOx. A total mechanism for the productive and the cross metathesis of propene was firstly established on an activated catalyst by using deuterium labeled olefins. In the second topic, a new concept of quasi-compounds is discussed by using scanning tunneling microscopy (STM), and it is shown that the reaction of quasi-compounds yields (Cu)6 cluster and (–Cu–O–) strings on Ag(110). In the third topic, a self-activation of Pt–Rh alloy and Pt/Rh bimetallic surfaces during the reaction of NO + H2 is discussed by using single crystal surfaces. STM image showed that a Pt–Rh(100) surface is activated by reacting with oxygen where a specific array of Pt and Rh atoms is established. Formation of similar active sites on the other crystallographic surfaces is responsible for structure insensitive catalysis of Pt/Rh bimetallic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tanaka, Advances in Catalysis 33 (1983) 99 and references therein; K. Tanaka and T. Okuhara, Catalysis Review, Sci. & Eng. 15 (1977) 249.

    Google Scholar 

  2. T. Okuhara, T. Kondo, K. Tanaka and K. Miyahara, J. Phys. Chem. 81 (1977) 90; K. Tanaka, K. Aomura, T. Okuhara and K. Miyahara, J. Chem. Soc. Faraday Trans. I. 77 (1981) 1697.

    Google Scholar 

  3. S. Yokoyama, K. Tanaka and J. Seisho, J. Chem. Commun. 1061 (1981); S. Yokoyama, K. Tanaka and H. Haneda, J. Chem. Commun. 820 (1982); K. Tanaka, Jpn. J. Appl. Phys. 32 (1993) 1389; K. Tanaka, Y. Matsumoto, T. Fujita and Y. Okawa, Appl. Surf. Sci. 130–132 (1998) 475; K. Matsumoto, Y. Okawa, T. Fujita and K. Tanaka, Surf. Sci. 355 (1996) 109.

  4. M. Kazuta and K. Tanaka, Catal. Lett. 1 (1988) 7; M. Kazuta and K. Tanaka, J. Chem. Soc. Chem. Commun. 616 (1987); M. Kazuta and K. Tanaka, J. Catal. 123 (1990) 164.

    Google Scholar 

  5. K. Tanaka and K. Tanaka, J. Chem. Soc. Chem. Commun. 748 (1984).

  6. K. Tanaka, K. Tanaka, H. Takeo and C. Matsumura, J. Am. Chem. Soc. 109 (1987) 2422.

    Google Scholar 

  7. H.A. Engelhardt and D. Menzel, Surf. Sci. 57 (1976) 591.

    Google Scholar 

  8. C.T. Campbell and T. Paffettt, Surf. Sci. 143 (1984) 513.

    Google Scholar 

  9. T. Hashizume, M. Taniguchi, K. Motai, H. Lu, K. Tanaka and T. Sakurai, Jpn. J. Appl. Phys. 30 (1991) L 1529; M. Taniguchi, K. Tanaka, T. Hashizume and T. Sakurai, Surf. Sci. 262 (1992) L 123; M. Taniguchi, K. Tanaka, T. Hashizume and T. Sakurai, Chem. Phys. Lett. 92 (1992) 117.

    Google Scholar 

  10. Y. Matsumoto, Y. Okawa and K. Tanaka, Surf. Sci. 336 (1995) L762.

    Google Scholar 

  11. Y. Matsumoto and K. Tanaka, Surf. Sci. 350 (1996) L227.

    Google Scholar 

  12. Y. Matsumoto and K. Tanaka, J. Vac. Sci. Technol. B 14 (1996) 1114.

    Google Scholar 

  13. Y. Okawa and K. Tanaka, Surf. Sci. 344 (1995) 1207.

    Google Scholar 

  14. R.J. Madix, J.L. Solomon and J. Stohr, Surf. Sci. 197 (188) L253.

  15. Y. Okawa and K. Tanaka, Appl. Phys. Lett. 70 (1997) 3371.

    Google Scholar 

  16. M. Taniguchi, E.K. Kuzembaev and K. Tanaka, Surf. Sci. Lett. 290 (1993) L711; K. Tanaka and M. Taniguchi, Topics in Catalysis 1 (1994) 95.

    Google Scholar 

  17. M. Ikai and K. Tanaka, Surf. Sci. 357–358 (1996) 781; M. Ikai and K. Tanaka, J. Chem. Phys., submitted.

    Google Scholar 

  18. K. Tanaka, Surf. Sci. 357–358 (1996) 721; H. Tamura and K. Tanaka, Langmuir 10 (1994) 4530; H. Tamura, A. Sasahara and K. Tanaka, J. Electroanal. Chem. 381 (1995) 95; K. Tanaka, Y. Okawa, A. Sasahara and Y. Matsumoto, Solid-Liquid Electrochemical Interfaces, ACS Symposium Series 656, eds. G. Jerkiewicz, M.P. Spriaga, K. Uosaki and A. Wieckowski (1996) ch. 18.

    Google Scholar 

  19. A. Sasahara, H. Tamura and K. Tanaka, J. Phys. Chem. 100 (1996) 15229.

    Google Scholar 

  20. A. Sasahara, H. Tamura and K. Tanaka, J. Phys. Chem. B 101 (1997) 1186; H. Tamura, A. Sasahara and K. Tanaka, Catalysis and Automotive Pollution Controll — III, Studies in Surface Science and Catalysis, Vol. 96 (Elsevier, Amsterdam, 1995) pp. 229–236.

    Google Scholar 

  21. A. Sasahara, H. Tamura and K. Tanaka, Catal. Lett. 28 (1994) 161; A. Sasahara, H. Tamura and K. Tanaka, J. Phys. Chem. 100 (1996) 15229; H. Tamura, A. Sasahara and K. Tanaka, Catalysis and Automotive Pollution Controll — III, Studies in Surface Science and Catalysis, Vol. 96 (Elsevier, Amsterdam, 1995) pp. 229–236.

    Google Scholar 

  22. H. Hirano, T. Yamada, K. Tanaka, J. Siera and B.E. Nieuwenhuys, Surf. Sci. 222 (1989) L804; H. Hirano, T. Yamada, K. Tanaka, J. Siera and B.E. Nieuwenhuys, Vacuum 41 (1990) 134; T. Yamada, H. Hirano, J. Siera, B.E. Nieuwenhuys and K. Tanaka, Surf. Sci. 226 (1990) 1.

    Google Scholar 

  23. F.C.M.J.M. van Delft, B.E. Nieuwenhuys, J. Siera and R.M. Wolf, Surf. Sci. 264 (1992) 435.

    Google Scholar 

  24. T.T. Tsong, D.M. Ren and M. Ahdam, Phys. Rev. B 38 (1988) 7428.

    Google Scholar 

  25. Y. Matsumoto, Y. Okawa, T. Fujita and K. Tanaka, Surf. Sci. 355 (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Ki. Self-activation of catalyst and functionalization of metal surfaces. Catalysis Surveys from Asia 3, 81–93 (1999). https://doi.org/10.1023/A:1019067517334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019067517334

Navigation