Skip to main content
Log in

Characterization of acid properties of [Al]- and [Ga]-HZSM-5 zeolites by low temperature Fourier transform infrared spectroscopy of adsorbed carbon monoxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

[Al]- and [Ga]-HZSM-5 having closely similar acid site densities were prepared. Temperature-programmed desorption of ammonia (TPDA) proved the known acid strength sequence: [Al]>[Ga]. Frequency shifts of the OH stretching mode to lower frequencies were induced upon CO adsorption at 77 K due to OH ⋯ CO H-bonding interactions. These frequency shifts are a measure of the H-bond donor strength of the OH groups and hence, of their acidic strength. The observed shifts of 313 and 282 cm−1 for the [Al]- and [Ga]-silicate, respectively, clearly reflect their relative acid strength. [Ga]-HZSM-5 develops an acid strength similar to that found for HNaY at high exchange levels. Evidence is presented for an intrinsic heterogeneity of acid properties of the acidic hydroxyls probably caused by inhomogeneous distributions of the trivalent cations in the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-P. Boehm and H. Knözinger, in:Catalysis — Science and Technology, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1983) p. 39.

    Google Scholar 

  2. E.A. Paukshtis and E.N. Yurchenko, Russ. Chem. Rev. 52 (1983) 242.

    Google Scholar 

  3. M.I. Zaki and H. Knözinger, Mater. Chem. Phys. 17 (1987) 201.

    Google Scholar 

  4. H. Knözinger, in:Acid-Base Catalysis, eds. K. Tanabe, H. Hattori, T. Yamaguchi and T. Tanaka (Kodansha/Verlag Chemie, Tokyo/Weinheim, 1989) p. 147.

    Google Scholar 

  5. M.I. Zaki and H. Knözinger, J. Catal. 119 (1989) 311.

    Google Scholar 

  6. G. Ghiotti, E. Garrone, C. Morterra and F. Boccuzzi, J. Phys. Chem. 83 (1979) 2863.

    Google Scholar 

  7. T.P. Beebe, P. Gelin and J.T. Yates Jr., Surf. Sci. 148 (1984) 526.

    Google Scholar 

  8. L.M. Kustov, V.B. Kazansky, S. Beran, L. Kubelková and P. Jiru, J. Phys. Chem. 91 (1987) 5247.

    Google Scholar 

  9. L. Kubelková, S. Beran and J.A. Lercher, Zeolites 9 (1989) 539.

    Google Scholar 

  10. N. Echoufi and P. Gélin, J. Chem. Soc. Faraday Trans. 88 (1992) 1067.

    Google Scholar 

  11. A. Zecchina, S. Bordiga, G. Spoto, L. Marchese, G. Petrini, G. Leofanti and M. Padovan, J. Phys. Chem. 96 (1992) 4991.

    Google Scholar 

  12. A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Petrini, G. Leofanti, M. Padovan and C. Otero Areán, J. Chem. Soc. Faraday Trans. 88 (1992) 2959.

    Google Scholar 

  13. T. Chevreau, S. Khabtou, M. Maache, A. Janin and J.C. Lavalley,Proc. 9th Int. Zeolite Conf., Montreal 1992, Book of Abstracts, eds. J.B. Higgins, R. von Ballmoos and M.M.J. Treacy (Butterworth-Heinemann, London) RP 92.

    Google Scholar 

  14. B. Umansky, J. Engelhardt and W.K. Hall, J. Catal. 127 (1991) 128.

    Google Scholar 

  15. M. Thielen, M. Geelen and P.A. Jacobs,Proc. Int. Symp. on Zeolite Catalysis, Siofok 1985, Acta Physica et Chemica Szegediensis (1985) p. 1.

  16. C.T.W. Chu and C.D. Chang, J. Phys. Chem. 89 (1985) 1569.

    Google Scholar 

  17. M.F.M. Post, T. Huizinga, C.A. Emeis, J.M. Nanne and W.H.J. Stork, in:Zeolites as Catalysts, Sorbents and Detergent Builders — Applications and Innovations, eds. H.G. Karge and J. Weitkamp (Elsevier, Amsterdam, 1989) p. 365.

    Google Scholar 

  18. J. Weitkamp, H.K. Beyer, G. Borbély, V. Cortes-Corberán and S. Ernst, Chem.-Ing.-Techn. 58 (1986) 969.

    Google Scholar 

  19. G. Kunzmann, Doctoral Thesis, University of Munich, Germany (1987).

    Google Scholar 

  20. A.G. Pelmenschikov, G. Morosi and A. Gamba, J. Phys. Chem. 95 (1991) 10037.

    Google Scholar 

  21. H.G. Karge, J. Ladebeck, Z. Sarbak and K. Hatada, Zeolites 2 (1982) 94.

    Google Scholar 

  22. G.J. Kramer, A.J.M. de Man and R.A. van Santen, J. Am. Chem. Soc. 113 (1991) 6435.

    Google Scholar 

  23. R.A. van Santen, G.J. Kramer and W.P.J.H. Jacobs, in:Elementary Reaction Steps in Heterogeneous Catalysis, eds. R.W. Joyner and R.A. van Santen (Plenum Press, New York, 1993) p. 113.

    Google Scholar 

  24. A.G. Pelmenschikov, V.I. Pavlov, G.M. Zhidomirov and S. Beran, J. Phys. Chem. 91 (1987) 3325.

    Google Scholar 

  25. E. Dima and L.V.C. Rees, Zeolites 7 (1987) 219.

    Google Scholar 

  26. H.G. Karge, V. Dondur and J. Weitkamp, J. Phys. Chem. 95 (1991) 283.

    Google Scholar 

  27. G.J. Kramer and R.A. van Santen, J. Am. Chem. Soc. 115 (1993) 2887.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute of Petroleum and Chemistry, M. Azizbekov, Baku, Azerbeidjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirsojew, I., Ernst, S., Weitkamp, J. et al. Characterization of acid properties of [Al]- and [Ga]-HZSM-5 zeolites by low temperature Fourier transform infrared spectroscopy of adsorbed carbon monoxide. Catal Lett 24, 235–248 (1994). https://doi.org/10.1007/BF00811796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811796

Keywords

Navigation