Skip to main content
Log in

Molecular heterogeneity of naturally occurringsn-glycerol-3-phosphate dehydrogenase low-activity variants inDrosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Northern analyses of two low-activitysn-glycerol-3-phosphate dehydrogenase(Gpdh) alleles extracted from natural populations ofDrosophila melanogaster showed that one of them,Gpdh ACyg22, produced wild-type levels of a normal sized (1.7-kb) mRNA but the other,Gpdh AMB5, had very low levels of a 1.7-kb mRNA together with low levels of a transcript 200 bp larger. The two variant genes were cloned and sequenced. Compared with normal activity alleles, there were two nucleotide differences in the DNA sequence ofGpdh ACyg22 which were in first-codon positions and would be expected to give rise to Asn-13 → Tyr and Arg-272 → Cys substitutions. The second of these changes is most likely to account for the altered properties of the enzyme. In contrast, none of the nucleotide differences inGpdh AMB5 would give rise to amino acid substitutions, but a 76-bp deletion in the 5′ region removed the normal TATA box and there was a 20-bp insertion in the same region. One of the two transcripts was derived from the use of a substitute TATA box sequence in the insertion, but the 1.9-kb transcript had heterogeneous 5′ ends that were not associated with substitute TATA box sequences. The two transcripts either are produced at a lower rate or are less stable than the normal mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoist, C., and Chambon, P. (1981).In vivo sequence requirements of the SV40 early promoter region.Nature 290304.

    Google Scholar 

  • Beutler, E., Kuhl, W., Gelbart, T., and Forman, L. (1991). DNA sequence abnormalities of human glucose-6-phosphate dehydrogenase variants.J. Biol. Chem. 2664145.

    Google Scholar 

  • Bewley, G. C. (1978). Heat stability studies at the α-glycerophosphate dehydrogenase locus in populations ofDrosophila melanogaster.Biochem. Genet. 16767.

    Google Scholar 

  • Bewley, G. C. (1981). Genetic control of the developmental program of L-glycerol-3-phosphate dehydrogenase isozymes inDrosophila melanogaster: Identification of acis-acting temporal element affecting GPDH-3 expression.Dev. Genet. 2113.

    Google Scholar 

  • Bewley, G. C., and Miller, S. (1979). Origin and differentiation of the soluble and α-glycerol-3-phosphate dehydrogenase isozymes inDrosophila melanogaster. In Rattazi, M. C., Scandalios, J. G., and Whitt, G. S. (eds.),Isozymes: Current Topics in Biological and Medical Research, Vol 3 Alan R. Liss, New York, pp. 23–52.

    Google Scholar 

  • Bewley, G. C., Rawls, J. M., Jr., and Lucchesi, J. C. (1974). α-Glycerophosphate dehydrogenase inDrosophila melanogaster: Kinetic differences and developmental differentiation of the larval and adult isozymes.J. Insect. Physiol. 20153.

    Google Scholar 

  • Bewley, G. C., Niesel, D. W., and Miller, S. G. (1979). Purification and structural analysis of α-glycerol-3-phosphate dehydrogenase isozymes ofDrosophila melanogaster.Isozyme Bull. 1226.

    Google Scholar 

  • Bewley, G. C., Niesel, D. W., and Wilkins, J. R. (1984). Purification and characterization of the naturally occurring allelic variants of α-glycerol-3-phosphate dehydrogenase inD. melanogaster.Comp. Biochem. Physiol. 7923.

    Google Scholar 

  • Bewley, G. C., Cook, J. L., Kusakabe, S., Mukai, T., Rigby, D. L., and Chambers, G. K. (1989). Sequence, structure and evolution of the gene coding forsn-glycerol-3-phosphate dehydrogenase inDrosophila melanogaster.Nucl. Acids. Res. 178553.

    Google Scholar 

  • Breathnach, R., and Chambon, P. (1981). Organization and expression of eukaryotic split genes coding for proteins.Annu. Rev. Biochem. 50349.

    Google Scholar 

  • Burkhart, B. D., Montgomery, E., Langley, C. H., and Voelker, R. A. (1984). Characterization of allozyme null and low activity alleles from two natural populations ofDrosophila melanogaster.Genetics 107295.

    Google Scholar 

  • Chia, W., Savakis, C., Karp, R., Pelham, H., and Ashburner, M. (1985). Mutation of theAdh gene ofDrosophila melanogaster containing an internal tandem duplication.J. Mol. Biol. 186679.

    Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 185294.

    Google Scholar 

  • Collier, G. E. (1979). Genetic analysis of a suppressor of α-glycerophosphate dehydrogenase null mutations inDrosophila melanogaster. Genetics 91 (Suppl.):S23.

    Google Scholar 

  • Cook, J. L., Shaffer, J. B., Bewley, G. C., MacIntyre, R. J., and Wright, D. A. (1986). Isolation of a genomic clone forDrosophila sn-glycerol-3-phosphate dehydrogenase using synthetic oligonucleotides.J. Biol. Chem. 26111751.

    Google Scholar 

  • Cook, J. L., Bewley, G. C., and Shaffer, J. B. (1988).Drosophila sn.J. Biol. Chem. 26310858.

    Google Scholar 

  • Dayhoff, M. O., Eck, R. V., and Park, C. M. (1972). A model of evolutionary change in proteins. In Dayhoff, M. O. (ed.),Atlas of Protein Sequence and Structure National Biomedical Research Foundation, Washington, DC, pp. 89–99.

    Google Scholar 

  • Edwards, J. B. D. M., Delort, J., and Mallet, J. (1991). Oligodeoxyribonucleotide ligation to single-stranded cDNAs: A new tool for cloning 5′ ends of mRNA and for constructing cDNA.Nucl. Acids Res. 195227.

    Google Scholar 

  • Freeth, A. L., and Gibson, J. B. (1985). Alcohol dehydrogenase andsn-glycerol-3-phosphate dehydrogenase null activity alleles in natural populations ofDrosophila melanogaster.Heredity 55369.

    Google Scholar 

  • Freeth, A. L., Gibson, J. B., and Wilks, A. V. (1987). Transcription analysis of alcohol dehydrogenase null alleles from natural populations ofDrosophila melanogaster.Genome 3025.

    Google Scholar 

  • Frohman, M. A. (1990). RACE: Rapid amplification of cDNA ends. In Innis, M. A., Gelfand, D. H., Sninsky, J., and White, T. J. (eds.),PCR Protocols Academic Press, San Diego, CA.

    Google Scholar 

  • Frohman, M. A., Dush, M. K., and Martin, G. R. (1988). Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer.Proc. Natl. Acad. Sci. 858998.

    Google Scholar 

  • Gibson, J. B., Wilks, A. V., Cao, A., and Freeth, A. L. (1986). Dominance forsn-glycerol-3-phosphate dehydrogenase activity inDrosophila melanogaster: Evidence for differential allelic expression mediated via a trans-acting effect.Heredity 56227.

    Google Scholar 

  • Gibson, J. B., Cao, A., Symonds, J. E., and Reed, D. (1991). Low activitysn-glycerol-3-phosphate dehydrogenase variants in natural populations ofDrosophila melanogaster.Heredity 6675.

    Google Scholar 

  • Grosschedl, R., and Birnsteil, M. L. (1980). Identification of regulatory sequences in the prelude sequence of an H2A histone gene by the study of specific deletion mutantsin vivo.Proc. Natl. Acad. Sci. 771432.

    Google Scholar 

  • Keller, G. B., and Noon, W. A. (1985). Intron splicing: A conserved internal signal in introns ofDrosophila pre-mRNA's.Nucl. Acids. Res. 134971.

    Google Scholar 

  • Koga, A., Kusakabe, S., Tajima, F., Harada, K., Bewley, G. C., and Mukai, T. (1988). Widespread polymorphism of a tandem duplication in the region of the glycerol-3-phosphate dehydrogenase gene inDrosophila melanogaster.Proc. Jap. Acad. 649.

    Google Scholar 

  • Kotarski, M. A., Pickert, S., Leonard, D. A., La Rosa, G. T., and MacIntyre, R. J. (1983). The characterization of α-glycerophosphate dehydrogenase mutants inDrosophila melanogaster.Genetics 105387.

    Google Scholar 

  • Langley, C. H., Voelker, R. A., Leigh Brown, A. J., Ohnishi, S., Dickson, B., and Montgomery, E. (1981). Null allele frequencies at allozyme loci in natural populations ofDrosophila melanogaster.Genetics 99151.

    Google Scholar 

  • Lee, C.-Y., Niesel, D., and Bewley, G. C. (1980). Analyses of genetic variants of α-glycerol-3-phosphate dehydrogenase inDrosophila melanogaster by two-dimensional gel electrophoresis and immunoelectrophoresis.Biochem. Genet. 181003.

    Google Scholar 

  • MacIntyre, R. J., and O'Brien, S. J. (1976). Interacting gene-enzyme systems inDrosophila.Annu. Rev. Genet. 109281.

    Google Scholar 

  • Mozer, B., Marlor, R., Parkhurst, S., and Corces, V. (1985). Characterization and developmental expression of aDrosophila ras oncogene.Mol. Cell. Biol. 5885.

    Google Scholar 

  • Niesel, D. W., Bewley, G. C., Miller, S. G., Armstrong, F. B., and Lee, C.-Y. (1980). Purification and structural analysis of the soluble-sn-GPDH isozymes ofDrosophila melanogaster.J. Biol. Chem. 2554073.

    Google Scholar 

  • Niesel, D. W., Pan, Y.-C. E., Bewley, G. C., Armstrong, F. B., and Li, S. S.-L. (1982). Structural analysis of adult and larval isozymes ofsn-glycerol-3-phosphate dehydrogenase ofDrosophila melanogaster.J. Biol. Chem. 257979.

    Google Scholar 

  • O'Brien, S. J., and MacIntyre, R. J. (1972). The α-glycerophosphate cycle inDrosophila melanogaster. II. Genetic aspects.Genetics 71127.

    Google Scholar 

  • O'Brien, S. J., and Shimada, Y. (1974). The α-glycerophosphate cycle inDrosophila melanogaster. IV. Metabolic, ultrastructural and adaptive consequences of α-Gpdh-1 “null” mutations.J. Cell Biol. 63864.

    Google Scholar 

  • O'Brien, S. J., Wallace, B., and MacIntyre, R. J. (1972). The α-glycerophosphate cycle inDrosophila melanogaster. III. Relative viability of “null” mutants at the α-glycerophosphate dehydrogenase locus.Am. Nat. 106767.

    Google Scholar 

  • Otto, J., Algos, P., and Rossmann, M. G. (1980). Prediction of secondary structural elements in glycerol-3-phosphate dehydrogenase by comparison with other dehydrogenases.Eur. J. Biochem. 109325.

    Google Scholar 

  • Peterson, M. G., Tanese, N., Pugh, F. B., and Tijian, R. (1990). Functional domains and upstream activation properties of cloned human TATA binding protein.Science 2481625.

    Google Scholar 

  • Reed, D. S., and Gibson, J. B. (1993). Defective P element insertions affect the expression ofsn-glycerol-3-phosphate dehydrogenase alleles in natural populations ofDrosophila melanogaster.Proc. R. Soc. Lond. B 25139.

    Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Roades, C., and Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activityin vitro by nick translation with DNA polymerase I.J. Mol. Biol. 113237.

    Google Scholar 

  • Sacktor, B. (1970). Regulation of intermediary metabolism with special reference to control mechanisms in insect flight muscle.Adv. Insect Physiol. 7267.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. 745463.

    Google Scholar 

  • Shaffer, J. B., and Bewley, G. C. (1983). Genetic determination ofsn-glycerol-3-phosphate dehydrogenase synthesis inDrosophila melanogaster.J. Biol. Chem. 25810027.

    Google Scholar 

  • Sullivan, D. T., Donovan, F. A., and Skuse, G. (1983). Developmental regulation of glycerol-3-phosphate dehydrogenase synthesis inDrosophila melanogaster.Biochem. Genet. 2149.

    Google Scholar 

  • Symonds, J. E. (1990).Biochemical and Molecular Studies of sn-Glycerol-3-Phosphate Dehydrogenase in Drosophila melanogaster, Ph.D. thesis, Australian National University, Canberra.

    Google Scholar 

  • Symonds, J. E., and Gibson, J. B. (1992). Restriction site variation, gene duplication, and the activity ofsn-glycerol-3-phosphate dehydrogenase inDrosophila melanogaster.Biochem. Genet. 30169.

    Google Scholar 

  • Takano, T., Kusakabe, S., Koga, A., and Mukai, T. (1989). Polymorphism for the number of tandemly multiplicated glycerol-3-phosphate dehydrogenase genes inDrosophila melanogaster.Proc. Natl. Acad. Sci. 865000.

    Google Scholar 

  • Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl. Acad. Sci. 775201.

    Google Scholar 

  • Voelker, R. A., Langley, C. H., Leigh Brown, A. J., Ohnishi, S., Dickson, B., Montgomery, E., and Smith, S. (1980a). Enzyme null alleles in natural populations ofDrosophila melanogaster: Frequencies in a North Carolina population.Proc. Natl. Acad. Sci. 771091.

    Google Scholar 

  • Voelker, R. A., Schaffer, H. E., and Mukai, T. (1980b). Spontaneous allozyme mutations inDrosophila melanogaster: Rate of occurrence and nature of the mutants.Genetics 94961.

    Google Scholar 

  • von Kalm, L., Weaver, J., DeMarco, J., MacIntyre, R. J., and Sullivan, D. T. (1989). Structural characterization of the α-glycerol-3-phosphate dehydrogenase-encoding gene ofDrosophila melanogaster.Proc. Natl. Acad. Sci. 865020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, D.S., Gibson, J.B. Molecular heterogeneity of naturally occurringsn-glycerol-3-phosphate dehydrogenase low-activity variants inDrosophila melanogaster . Biochem Genet 32, 161–179 (1994). https://doi.org/10.1007/BF00554620

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554620

Key words

Navigation