Skip to main content
Log in

Heterosis for concentrations of dopamine, norepinephrine, their metabolites, and epinephrine in the chick hyperstriatum ventrale, hypothalamus, and optic tectum

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

A complete diallel cross using both sexes was derived from four parental populations of chickens having divergent developmental rates. This paradigm was used to investigate the genetic architecture of the neurochemicals, norepinephrine (NE), epinephrine (EPI), 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), and 3-methoxy-4-hydroxyphenylglycol (MHPG). No sex differences were found for any genetic parameter investigated. Estimates of average line effects, maternal effects, and additive sex linkage were not significant. Highly significant heterosis, in the form of overdominance, was observed for catecholamine and metabolite concentrations. Hybrids exhibited significant line heterosis in the positive direction for NE, while heterosis for MHPG was observed in the negative direction for all crosses. Heterosis for EPI was both line and brain area specific with the hypothalamus showing greatest heterotic effects. DOPAC showed significant heterosis for all lines only in the optic tectum, and DA showed little heterosis specific to any line, cross, or brain area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbato, G. F. (1990). A fast HPLC analysis of catecholamines and indolamines in avian brain tissue.J. Liq. Chromatogr. 13:2553–2560.

    Google Scholar 

  • Barbato, G. F. (1991). Genetic architecture of growth curve parameters in chickens.Theor. Appl. Genet. 83:24–32.

    Google Scholar 

  • Barchas, J. D., Ciaranello, R. D., Kessler, S., and Hamburg, D. A. (1975). Genetic aspects of catecholamine synthesis. In Fieve, R. R., Rosenthal, D., and Brill, H. (eds.),Genetic Research in Psychiatry, The Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Barrett, J. E., and Nader, M. A. (1990). Neurochemical correlates of behavioral processes.Drug Dev. Res. 20:313–335.

    Google Scholar 

  • Broadhurst, P. L., and Jinks, J. L. (1974). What genetical architecture can tell us about the natural selection of behavioral traits. In van Abeelen, J. H. F. (ed.),The Genetic Basis of Behaviour, North-Holland, Amsterdam.

    Google Scholar 

  • Bruell, J. H. (1967). Behavioral heterosis. In Hirsch, J. (ed.),Behavior-Genetic Analysis, McGraw-Hill, New York.

    Google Scholar 

  • Callingham, B. A., and Sharman, D. F. (1970). The concentration of catecholamines in the brain of the domestic fowl (Gallus domesticus).Br. J. Pharmacol. 40:1–5.

    Google Scholar 

  • Carbonell, E. A., Nyquist, W. E., and Bell, A. E. (1983). Sex-linked and maternal effects in the Eberhart-Gardner general genetics model.Biometrics 39:607–619.

    Google Scholar 

  • Ciaranello, R. D., Dornbusch, J. N., and Barchas, J. D. (1972). Regulation of adrenal phenyl-ethanolamine-N-methyltransferase activity in three inbred mouse strains.Mol. Pharmacol. 8:511–520.

    Google Scholar 

  • Davies, D. C., Horn, G., and McCabe, B. J. (1983). Changes in telencephalic catecholamine levels in the domestic chick. Effects of age and visual experience.Dev. Brain. Res. 10251–255.

    Google Scholar 

  • Eisen, E. J., Horstgen-Schwark, G., Saxton, A. M., and Bandy, T. R. (1983). Genetic interpretation and analysis of diallel crosses with animals.Theor. Appl. Genet. 65:17–23.

    Google Scholar 

  • Falconer, D. S. (1960).Introduction to Quantitative Genetics, Ronald Press, New York.

    Google Scholar 

  • Fuller, J. L., and Herman B. H. (1976). Effect of genotype and practice upon behavioral development in mice.Dev. Psychobiol. 7:21–30.

    Google Scholar 

  • Gardner, C. O., and Eberhardt, S. A. (1966). Analysis and interpretation of the variety cross diallel and related populations.Biometrics 22:439–452.

    Google Scholar 

  • Gold, P. E., Roberson, N. L., and Delanoy, R. L. (1985). Post-training brain catecholamine levels: Lack of response to water-motivated training.Behav. Neural Biol. 44:425–433.

    Google Scholar 

  • Graves, H. B., and Siegel, P. B. (1968). Chick's response to an imprinting stimulus: Heterosis and evolution.Science 132:1834–1835.

    Google Scholar 

  • Graves, H. B., and Siegel, P. B. (1969). Bidirectional selection for responses ofGallus domesticus chicks to an imprinting stimulus.Anim. Behav. 17:683–691.

    Google Scholar 

  • Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems.Austr. J. Biol. Sci. 9:463–493.

    Google Scholar 

  • Hahn, M. E., and Haber, S. B. (1978). A diallel analysis of brain and body weight in male inbred laboratory mice (Mus musculus).Behav. Genet. 8:251–260.

    Google Scholar 

  • Hayman, B. I. (1954). The theory and analysis of diallel crosses.Genetics 39:789–809.

    Google Scholar 

  • Henderson, N. D. (1970). Brain weight increases resulting from environmental enrichment. A directional dominance in mice.Science 169:766–778.

    Google Scholar 

  • Henderson, N. D. (1973). Brain weight changes resulting from enriched rearing conditions: A diallel cross analysis.Dev. Psychobiol. 6:367–376.

    Google Scholar 

  • Henderson, N. D. (1989). Genetic influences on behavior of infantMus domesticus: A comparison of results from diallels derived from single and multiple populations.Behav. Genet. 19:551–574.

    Google Scholar 

  • Jensen, C., and Fuller, J. L. (1978). Learning performance varies with brain weight in heterogeneous mouse lines.J. Comp. Physiol. Psychol. 92:830–836.

    Google Scholar 

  • Joseph, M. H., Fillenz, M., MacDonald, I. A., and Marsden, C. A. (eds.) (1986).Monitoring Neurotransmitter Release During Behavior, VCH, Deerfield Beach, FL.

    Google Scholar 

  • Juorio, A. V., and Vogt, M. (1967). Monoamines and their metabolites in the avian brain.J. Physiol. 189:489–518.

    Google Scholar 

  • Kasamatsu, T., Pettigrew, J. B., and Ary, M. (1979). Restoration of visual cortical plasticity by local microperfusion of norepinephrine.J. Comp. Neurol. 185:139–162.

    Google Scholar 

  • Kessler, S., Ciaranello, R. D., Shire, J. G. M., and Barchas, J. D. (1972). Genetic variation in catecholamine-synthesizing enzyme activity.Proc. Natl. Acad. Sci. USA 69:2448–2450.

    Google Scholar 

  • Kovach, J. K. (1985). Constitutional biases in early perceptual learning. II. Visual preferences in artificially selected, visually naive and imprinted quail chicks (C. coturnix japonica).J. Comp. Psychol. 97:226–239.

    Google Scholar 

  • Kruzelock, R. P., and Barbato, G. F. (1991). Genotype differences in catecholamine concentrations in hypothalamus, intramedial hyperstriatum ventrale, and optic tectum of newly hatched chicks.Neurochem. Res. 16:105–112.

    Google Scholar 

  • Kuenzel, W. J., and Masson, M. (1988).A Stereotaxic Atlas of the Brain of the Chick (Gallus domesticus). Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Markwell, M. A. K., Haas, S. M., Tolbert, N. E., and Bieber, L. L. (1981). Protein determination in membrane and lipoprotein samples: Manual and automated procedures.Meth. Enzymol. 72:296–303.

    Google Scholar 

  • Mather, K., and Jinks, J. L. (1971).Biometrical Genetics, Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  • McKay, L., Bradberry, C., and Oke, A. (1984). Ascorbic acid oxidase speeds up analysis for catecholamines, indolamines and their metabolites in brain tissue using high-performance liquid chromatography with electrochemical detection.J. Chromatogr. 311:167–169.

    Google Scholar 

  • Nikulina, E. M. (1990). Brain catecholamines during domestication of the silver fox (Vulpes fulvus).J. Evol. Biochem. Physiol. 26:118–121.

    Google Scholar 

  • Roderick, T. H., Wimer, R. E., and Wimer, C. C. (1976). Genetic manipulation of neuroanatomical traits. In Petrinovich, L., and McGaugh, J. L. (eds.),Knowing, Thinking and Believing, Plenum, New York.

    Google Scholar 

  • SAS (1985).SAS/IML Guide for Personal Computers: Version 6, SAS Institute, Cary, NC.

    Google Scholar 

  • Schaff, D. A., Milliken, G. A., and Clayberg, C. D. (1987). Computational procedure for a weighted diallel analysis.Theor. Appl. Genet. 74:538–541.

    Google Scholar 

  • Shire, J. G. M. (ed.). (1979).Genetic Variation in Hormone Systems, Vols. 1 and 2, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Shohemi, E., Segal, M., and Jacobowitz, D. M. (1983). Application of high performance liquid chromatography with electrochemical detection to the determination of catecholamines in microdissected regions of the rat brain.J. Neurosci. Methods 8:275–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported, in part, by a grant from the Pennsylvania Department of Agriculture to GFB (Contract Number ME48005).

To whom corrspondence should be addressed at 201 Henning Bldg., Department of Poultry Sciences, The Pennsylvania State University Park, Pennsylvania 16802.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbato, G.F., Kruzelock, R.P. Heterosis for concentrations of dopamine, norepinephrine, their metabolites, and epinephrine in the chick hyperstriatum ventrale, hypothalamus, and optic tectum. Behav Genet 22, 381–398 (1992). https://doi.org/10.1007/BF01066669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066669

Key Words

Navigation