Skip to main content
Log in

Donor-hydrogen complexes in crystalline silicon

  • Published:
Il Nuovo Cimento D

Summary

Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing 119Sb→119Sn source Mössbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mössbauer intensity associated with the trapping of hydrogen, even at low temperatures. This is interpreted as the formation of a component with a negligible recoilless fraction. The different Mössbauer components were studied as a function of H dose, H-implantation temperature and annealing temperature. The data show that the visible component is associated with the well-known SbH complex, whereas the invisible component is associated with the formation of SbH n (n≥2) complexes. We show that these complexes are in thermal equilibrium with a larger hydrogen reservoir (H *2 ), which governs their thermal stability. No Sb-H complexes are observed in p-type Si after H-implantation, in agreement with the current belief that hydrogen has a deep donor level in the gap. The microscopic structure of the various Sb-H and Sn-H complexes was studied with first-principles calculations using the pseudopotentialdensity-functional approach. The structure of the Sb-H complex is found to be similar to the P-H complex, with the H in an antibonding site of a Si atom neighbouring the Sb impurity. For SbH2 three configurations are found with energies differing by less than ≈ 0.1 eV. We find that the reaction SbH+H≠SbH2 is exothermic. We argue that the SbH2 complexes are shallow donors, irrespective of the structure. Therefore, the formation of SbH2 may depassivate the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Myers S. M. et al., Rev. Mod. Phys., 64 (1990) 559.

    Article  ADS  Google Scholar 

  2. Pankove J. I. and Johnson N. M. (Editors), Hydrogen in semiconductors, in Semiconductors and Semimetals, Vol. 34 (Academic Press, New York, N.Y.) 1991.

    Google Scholar 

  3. Tavendale A. J., Alexiev D. and Williams A. A., Appl. Phys. Lett., 47 (1985) 316.

    Article  ADS  Google Scholar 

  4. Stavola M., Pearton S. J., Lopata J. and Dautremont-Smith W. C., Phys. Rev. B, 37 (1988) 8313.

    Article  ADS  Google Scholar 

  5. Nichols C. S., Clarke D. R. and Van de Walle C. G., Phys. Rev. Lett., 63 (1989) 1090.

    Article  ADS  Google Scholar 

  6. Chang K. J. and Chadi D. J., Phys. Rev. Lett., 60 (1988) 1422.

    Article  ADS  Google Scholar 

  7. Van de Walle C. G., Denteneer P. J. H., Bar-Yam Y. and Pantelides S. T., Phys. Rev. B, 39 (1989) 10791.

    Article  Google Scholar 

  8. Stavola M., Bergman K., Pearton S. J. and Lopata J., Phys. Rev. Lett., 24 (1988) 2786.

    Article  ADS  Google Scholar 

  9. Johnson N. M., Herring C. and Chadi D. J., Phys. Rev. Lett., 56 (1986) 769.

    Article  ADS  Google Scholar 

  10. Zhu J., Johnson N. M. and Herring C., Phys. Rev. B, 41 (1990) 12354.

    Article  ADS  Google Scholar 

  11. Seager C. H. and Anderson R. A., Solid State Commun., 76 (1990) 285.

    Article  ADS  Google Scholar 

  12. Johnson N. M., Herring C. and Van de Walle C. G., Phys. Rev. Lett., 73 (1994) 130.

    Article  ADS  Google Scholar 

  13. Bergman K., Stavola M., Pearton S. J. and Lopata J., Phys. Rev. B, 37 (1988) 2770.

    Article  ADS  Google Scholar 

  14. Denteneer P. J. H., Van de Walle C. G. and Pantelides S. T., Phys. Rev. B, 41 (1990) 3885.

    Article  ADS  Google Scholar 

  15. Zhang S. B. and Chadi D. J., Phys. Rev. B, 41 (1990) 3882.

    Article  ADS  Google Scholar 

  16. Corbett J. W., Pearton S. J. and Stavola M., in Defects Control in Semiconductors, edited by K. Sumino (North-Holland, Amsterdam) 1990, p. 53.

    Google Scholar 

  17. Herring C. and Johnson N. M., in Semiconductor and Semimetals, edited by J. I. Pankove and N. M. Johnson, Vol. 34 (Academic Press, New York, N.Y.) 1991, Chapt. 10.

    Google Scholar 

  18. Chang K. J. and Chadi D. J., Phys. Rev. Lett., 62 (1989) 937.

    Article  ADS  Google Scholar 

  19. Johnson N. M. et al., Mater. Sci. Forum, 83–87 (1992) 33.

    Google Scholar 

  20. Korpas L., Corbett J. W. and Estreicher S. K., Mater. Sci. Forum, 83–87 (1992) 27.

    Google Scholar 

  21. Liang Z. N. and Niesen L., Mater. Sci. Forum, 83–87 (1992) 99.

    Google Scholar 

  22. Liang Z. N., Niesen L. and Haas C., Phys. Rev. Lett., 72 (1994) 1846.

    Article  ADS  Google Scholar 

  23. Liang Z. N., Denteneer P. J. H and Niesen L., Phys. Rev. B, 52 (1995) 8864.

    Article  ADS  Google Scholar 

  24. Kohn W. and Vashsista P., in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum, New York, N.Y.) 1983, Chapt. 2.

    Google Scholar 

  25. Cerofolini G. F. et al., Phys. Rev. B, 41 (1990) 12607.

    Article  ADS  Google Scholar 

  26. Weyer G., Mössbauer Effect Methodology, 10 (1976) 301.

    Google Scholar 

  27. Liang Z. N. and Niesen L., Nucl. Instrum. Methods Phys. Res. B, 63 (1992) 147.

    Article  ADS  Google Scholar 

  28. Nylandsted-Larsen A., Petersen F. T. and Weyer G., J. Appl. Phys., 59 (1986) 1908.

    Article  ADS  Google Scholar 

  29. Seager C. H., Anderson R. A. and Brice D. K., J. Appl. Phys., 68 (1990) 3268.

    Article  ADS  Google Scholar 

  30. Liang Z. N., Thesis, Groningen (1994).

  31. Johnson N. M. and Herring C., Phys. Rev. B, 43 (1991) 14297.

    Article  ADS  Google Scholar 

  32. Denteneer P. J. H., Van de Walle C. G. and Pantelides S. T., Phys. Rev. B, 39 (1989) 10809.

    Article  ADS  Google Scholar 

  33. Bachelet G. B., Hamann D. R. and Schulüter M., Phys. Rev. B, 26 (1982) 4199.

    Article  ADS  Google Scholar 

  34. Monkhorst H. J. and Pack J. D., Phys. Rev. B, 13 (1976) 5188.

    Article  ADS  MathSciNet  Google Scholar 

  35. Martins J. L. and Zunger A., Phys. Rev. B, 30 (1984) 6217.

    Article  ADS  Google Scholar 

  36. Kraut E. A. and Harrison W. A., J. Vac. Sci. Technol. B, 3 (1985) 1267.

    Article  Google Scholar 

  37. Van Netten T. J., Stapel K. and Niesen L., J. Phys. (Paris), 47 (1986) C8–1049.

    Google Scholar 

  38. Weast R. C. (Editor), CRC Handbook of Chemistry and Physics (Chemical Rubber, Boca Raton) 1984.

    Google Scholar 

  39. Holbech J. D., Bech-Nielsen B., Jones R., Sitch P. and Öberg S., Phys. Rev. Lett., 71 (1993) 875.

    Article  ADS  Google Scholar 

  40. Boyce J. B. and Ready S. E., Physica B, 170 (1991) 305; Mater. Sci. Forum, 83–87 (1992) 1.

    Article  ADS  Google Scholar 

  41. Denteneer P. J. H., Van de Walle C. G. and Pantelides S. T., Phys. Rev. Lett., 62 (1989) 1884.

    Article  ADS  Google Scholar 

  42. Watkins G. D., Mater. Sci. Forum, 38–41 (1989) 39.

    Article  Google Scholar 

  43. Denteneer P. J. H., Proceedings of the XX International Conference on the Physics of Semiconductors, edited by E. M. Anastassakis and J. D. Joannopoulos (World Scientific, Singapore) 1990, p. 775.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z.N., Niesen, L., Haas, C. et al. Donor-hydrogen complexes in crystalline silicon. Il Nuovo Cimento D 18, 181–198 (1996). https://doi.org/10.1007/BF02458891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458891

PACS

PACS

PACS

PACS

PACS

PACS

PACS

Navigation