Skip to main content
Log in

Man-made materials—an exciting area for hyperfine-interaction investigations

  • Published:
Il Nuovo Cimento D

Summary

Man-made low-dimensional magnetic systems including surfaces, interfaces and multilayers, have attracted a great amount of attention in the past decade because, as expected, the lowered symmetry and coordination number offer a variety of opportunities for inducing new and exotic phenomena and so hold out the promise of new device applications. Local spin density functional (LSDF) ab initio electronic-structure calculations employing the full-potential-linearized augmented-plane-wave (FLAPW) method have played a key role in the development of this exciting field by not only providing a clearer understanding of the experimental observations but also predicting new systems with desired properties. One of the striking successes of theory in the last decade has been the calculation of hyperfine fields at surfaces and interfaces. Concurrently, several groups have followed the pioneering work of Korecki and Gradmann and have measured hyperfine fields at surfaces and interfaces. In this paper, we review new features of hyperfine-interaction investigations in man-made materials which emphasizes how the close interplay of theoretical determinations and experiment are essential because the hyperfine field is not proportional to the magnetization and so interpretations of experiment are totally dependent on theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Falicov L. M., Pierce D. T., Bader S. D., Gronsky R., Hathaway K. B., Hopster H. J., Lambeth D. N., Parkin S. P., Prinz G., Salamon M., Salamon M., Schuller I.K. and Victora R. H., J. Mater. Res., 5 (1990) 1299.

    Article  ADS  Google Scholar 

  2. Bader S. D., Proc. IEEE, 78 (1990) 909.

    Article  ADS  Google Scholar 

  3. Mathon J., Rep. Prog. Phys., 51 (1988) 1.

    Article  ADS  Google Scholar 

  4. Freeman A. J. and Wu R. Q., J. Magn. & Magn. Mater., 100 (1991) 497.

    Article  ADS  Google Scholar 

  5. Fu C. L., Freeman A. J. and Oguchi T., Phys. Rev. Lett., 54 (1985) 2700.

    Article  ADS  Google Scholar 

  6. Wu R. Q. and Freeman A. J., Phys. Rev. B, 51 (1995) 5408, and references therein.

    Article  ADS  Google Scholar 

  7. Tamura E., Feder R., Waller G. and Gradmann U., Phys. Status Solidi B, 157 (1990) 627.

    Article  Google Scholar 

  8. Elmers H. J., Liu G. and Gradmann U., Phys. Rev. Lett., 63 (1989) 566.

    Article  ADS  Google Scholar 

  9. Beier T., Pescia D., Stampanoni M., Vaterlaus A. and Meier F., Appl. Phys. A, 47 (1988) 73.

    Article  ADS  Google Scholar 

  10. Liebermann L. M., Fredkin D. R. and Shore H. B., Phys. Rev. Lett., 22 (1969) 539; Liebermann L. M., Clinton J., Edwards D. M. and Mathon J., Phys. Rev. Lett., 25 (1970) 232.

    Article  ADS  Google Scholar 

  11. Fu C. L. and Freeman A. J., Phys. Rev. B, 35 (1987) 925.

    Article  ADS  Google Scholar 

  12. Ohnishi S., Freeman A. J. and Weinert M., Phys. Rev. B, 28 (1983) 6741.

    Article  ADS  Google Scholar 

  13. Freeman A. J. and Fu C. L., J. Appl. Phys., 61 (1987) 3356; Fu C.L. and Freeman A. J., J. Magn. & Magn. Mater., 69 (1987) L1.

    Article  ADS  Google Scholar 

  14. Wu R. and Freeman A. J., Phys. Rev. B, 47 (1993) 3904.

    Article  ADS  Google Scholar 

  15. Fernando G. W. and Cooper B. R., Phys. Rev. B, 38 (1988) 3016.

    Article  ADS  Google Scholar 

  16. Macedo W. A. A. and Keune W., Phys. Rev. Lett., 61 (1990) 475.

    Article  ADS  Google Scholar 

  17. Wang C. S. and Freeman A. J., Phys. Rev. B, 21 (1980) 4585.

    Article  ADS  Google Scholar 

  18. Jepsen O., Madsen J. and Andersen O. K., J. Magn. & Magn. Mater., 15–18 (1980) 867; Phys. Rev. B, 26 (1982) 2790.

    Article  Google Scholar 

  19. Krakauer H., Freeman A. J. and Wimmer E., Phys. Rev. B, 28 (1983) 610.

    Article  ADS  Google Scholar 

  20. Zhu X., Hermanson J., Arlingghaus F. J., Gay J. G., Richter R. and Smith J. R., Phys. Rev. B, 29 (1984) 4426.

    Article  ADS  Google Scholar 

  21. Freeman A. J., Wang D. and Krakauer H., J. Appl. Phys., 53 (1982) 1997; Wimmer E., Freeman A. J. and Krakauer H., Phys. Rev. B, 30 (1984) 3113.

    Article  ADS  Google Scholar 

  22. Fu C. L. and Freeman A. J., J. Phys. (Paris), Colloq., 49 (1988) 1625.

    Article  Google Scholar 

  23. Freeman A. J., Fu C. L. and Oguchi T., Mat. Res. Soc. Symp. Proc., 63 (1985) 1.

    Google Scholar 

  24. Lee J. I., C.L. Fu C. L. and Freeman A. J., J. Magn. & Magn. Mater., 62 (1986) 93.

    Article  ADS  Google Scholar 

  25. Li C., Freeman A. J. and Fu C. L., J. Magn. & Magn. Mater., 75 (1988) 53.

    Article  ADS  Google Scholar 

  26. Lee J. I., Fu C. L. and Freeman A. J., to be published.

  27. Li C., Freeman A. J. and Fu C. L., J. Magn. & Magn. Mater., 94 (1991) 134.

    Article  ADS  Google Scholar 

  28. Weinert M. and Freeman A. J., J. Magn. & Magn. Mater., 38 (1983) 23.

    Article  ADS  Google Scholar 

  29. Koehler W. C., Moon R. M., Trego A. L. and MacKintosh A. R., Phys. Rev., 151 (1966) 405; Werner S. A., Arrott A. S. and Kendrick H., Phys. Rev., 155 (1967) 528.

    Article  ADS  Google Scholar 

  30. Ferguson P. E., J. Appl. Phys., 49 (1978) 2203.

    Article  ADS  Google Scholar 

  31. Klebanoff L. E., Robey S. W., Liu G. and Shirley D. A., Phys. Rev. B, 30 (1984) 1048; Zajac G., Bader S. D. and Friddle R. J., Phys. Rev. B, 31 (1985) 4947; Klebanoff L. E. and Shirley D. A., Phys. Rev. B, 33 (1986) 5301.

    Article  ADS  Google Scholar 

  32. Allan G., Phys. Rev. B, 19 (1979) 4774.

    Article  ADS  Google Scholar 

  33. Victora R. H. and Falicov L. M., Phys. Rev. B, 31 (1985) 7335; Klebanoff L. E., Victora R. H., Falicov L. M. and Shirley D. A., Phys. Rev. B, 32 (1985) 1997.

    Article  ADS  Google Scholar 

  34. Fu C. L. and Freeman A. J., Phys. Rev. B, 33 (1986) 1755.

    Article  ADS  Google Scholar 

  35. Blügel S., Pescia D. and Dederichs P. H., Phys. Rev. B, 39 (1989) 1392.

    Article  ADS  Google Scholar 

  36. Ohnishi S., Fu C. L. and Freeman A. J., J. Magn. & Magn. Mater., 50 (1985) 161.

    Article  ADS  Google Scholar 

  37. Turner A. M., Chang Y. J. and Erskine J. L., Phys. Rev. Lett., 48 (1982) 348; Turner A. M. and Erskine J. L., Phys. Rev. B, 28 (1983) 5628; 30 (1984) 6675.

    Article  ADS  Google Scholar 

  38. Rau C., Liu C., Schmalzbauer A. and Xing G., Phys. Rev. Lett., 57 (1986) 2311.

    Article  ADS  Google Scholar 

  39. Brodsky M. B. and Freeman A. J., Phys. Rev. Lett., 45 (1980) 133.

    Article  ADS  Google Scholar 

  40. Gradmann U. and Bergholz R., Phys. Rev. Lett., 52 (1984) 771.

    Article  ADS  Google Scholar 

  41. Chen H., Brener N. E. and Callaway J., Phys. Rev. B, 40 (1989) 1443.

    Article  ADS  Google Scholar 

  42. Shinjo T., Surf. Sci. Rep., 12 (1991) 51 and references therein to earlier work in the field.

    Article  ADS  Google Scholar 

  43. Freeman A. J. and Watson R. E., in Magnetism edited by G. T. Rado and H. Suhl, Vol. IIA (Academic, New York, N.Y.) 1965, p. 167.

    Google Scholar 

  44. Freeman A. J., Fu C. L., Weinert M. and Ohnishi S., Hyperfine Interact., 33 (1987) 53.

    Article  ADS  Google Scholar 

  45. Tyson J., Owens A. H., Walker J. C. and Bayreuther G., J. Appl. Phys., 52 (1981) 2487.

    Article  ADS  Google Scholar 

  46. Korecki J. and Gradmann U., Phys. Rev. Lett., 55 (1985) 2491.

    Article  ADS  Google Scholar 

  47. Li C., Freeman A. J. and Fu C. L., J. Magn. & Magn. Mater., 83 (1990) 51.

    Article  ADS  Google Scholar 

  48. Fu C. L. and Freeman A. J., J. Magn. & Magn. Mater., 54–57 (1986) 777.

    Article  Google Scholar 

  49. Li C., Freeman A. J. and Fu C. L., J. Magn. & Magn. Mater., 75 (1988) 201.

    Article  ADS  Google Scholar 

  50. Li C. and Freeman A. J., Phys. Rev. B, 43 (1991) 780.

    Article  ADS  Google Scholar 

  51. Ohnishi S., Weinert M. and Freeman A. J., Phys. Rev. B, 30 (1984) 36.

    Article  ADS  Google Scholar 

  52. Wu R. Q. and Freeman A. J., Phys. Rev. B, 44 (1991) 4449.

    Article  ADS  Google Scholar 

  53. Hong S. C., Freeman A. J. and Fu C. L., Phys. Rev B, 38 (1988) 12156.

    Article  ADS  Google Scholar 

  54. Wu R. Q. and Freeman A. J., Phys. Rev. B, 45 (1992) 7205.

    Article  ADS  Google Scholar 

  55. Wu R. Q., Li C. and Freeman A. J., J. Magn. & Magn. Mater., 99 (1991) 71.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, A.J., Wu, R. Man-made materials—an exciting area for hyperfine-interaction investigations. Il Nuovo Cimento D 18, 137–144 (1996). https://doi.org/10.1007/BF02458888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458888

PACS

PACS

PACS

PACS

Navigation