Skip to main content
Log in

Fascinating electronic games in iron complexes

  • Published:
Il Nuovo Cimento D

Summary

Coordination compounds of transition metal ions with open-shell electron configurations may exhibit dynamic electronic-structure phenomena, depending on the nature of the coordinating ligand sphere. The change of spin state with temperature («thermal spin-crossover»), light-induced electron transfer processes leading to long-lived metastable charge and spin states (e.g., «LIESST» effect), are some of the fascinating electronic games encountered in transition metal compounds, which are presently under extensive study by chemists and physicists. Mössbauer spectroscopy plays a dominant role in the investigation of such phenomena in iron compounds, as will be demonstrated in this paper. This work will focus on selected examples of «thermal spin-crossover» in iron(II) complexes and switching between different spin states by irradiation with light of different wavelength (LIESST effect), demonstrating that Mössbauer spectroscopy besides other physical techniques proves to be a highly elegant tool for following the spin state conversion and the concomitant changes of molecular and crystal structure properties. Finally, Mössbauer emission spectroscopy, both time integral and time differential, has been employed to generate and identify long-lived excited spin states by making use of the nuclear disintegration of 57Co as an intrinsic molecular light source (NIESST=nuclear decay-induced excited-spin-state trapping). Lifetime measurements by optical techniques on LIESST states and by time-differential Mössbauer coincidence spectroscopy on NIESST states prove that the relaxation pathways in the mechanisms for LIESST and NIESST are identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cambi L. and Cagnasso A., Atti Accad. Naz. Lincei, 13, (1931) 809.

    Google Scholar 

  2. Cambi L. and Szegö L., Ber. Dtsch. Chem. Ges., 64 (1931) 259.

    Google Scholar 

  3. Cambi L., Szegö L. and Cagnasso A., Atti Accad. Naz. Lincei, 15 (1932) 266.

    Google Scholar 

  4. Cambi L., Szegö L. and Cagnasso A., Atti Accad. Naz. Lincei, 15 (1932) 329.

    Google Scholar 

  5. Cambi L. and Szegö L., Ber. Dtsch. Chem. Ges., 66 (1933) 656.

    Article  Google Scholar 

  6. Baker W. A. and Bobonich H. M., Inorg. Chem., 3 (1964) 1184.

    Article  Google Scholar 

  7. Martin R. L. and White A. H., Transition Metal. Chem. (Chem. Soc. N.Y.), 4 (1968) 113.

    Google Scholar 

  8. König E., Coord. Chem. Rev., 3 (1968) 471.

    Article  Google Scholar 

  9. Goodwin H. A., Coord. Chem. Rev., 18 (1976) 293.

    Article  Google Scholar 

  10. Gütlich P., Struct. Bonding (Berlin), 44 (1981) 83.

    Article  Google Scholar 

  11. König E., Ritter G. and Kulshrechta S. K., Chem. Rev., 85 (1985) 219.

    Article  Google Scholar 

  12. Toftlund H., Coord. Chem. Rev., 94 (1989) 67.

    Article  Google Scholar 

  13. Gütlich P. and Hauser A., Coord. Chem. Rev., 97 (1990) 1.

    Article  Google Scholar 

  14. König E., Struct. Bonding (Berlin), 76 (1991) 51.

    Google Scholar 

  15. Gütlich P., Spiering H. and Hauser A., Angew. Chem., 106 (1994) 2109; see also Angew. Chem. Int. Ed. Engl., 33 (1994) 2024.

    Article  Google Scholar 

  16. Ballhausen C. J. and Gray H.B., Molecular Orbital Theory (Benjamin, New York, N.Y.) 1980.

    Google Scholar 

  17. Schläfer H. L. and Gliemann G., Einführung in die Ligandenfeldtheorie (Akademische Verlagsgesellschaft, Wiesbaden) 1980.

    Google Scholar 

  18. König E., Progr. Inorg. Chem., 35 (1987) 527.

    Article  Google Scholar 

  19. Sorai M and Seki S., J. Phys. Soc. Jpn., 33 (1972) 575.

    Article  ADS  Google Scholar 

  20. Renovitch G. A. and Baker W. A. jr., J. Am. Chem. Soc., 89 (1967) 6377.

    Article  Google Scholar 

  21. Sorai M., Ensling J. and Gütlich P., Chem. Phys., 18 (1976) 199.

    Article  Google Scholar 

  22. Mikami M., Konno K. and Saito Y., Chem. Phys. Lett., 63 (1979) 566.

    Article  ADS  Google Scholar 

  23. Spiering H., Meissner E., Köppen H., Müller E. W. and Gütlich P., Chem. Phys., 68 (1982) 65.

    Article  Google Scholar 

  24. Sanner I., Meissner E., Köppen H., Spiering H. and Gütlich P., Chem. Phys., 86 (1984) 227.

    Google Scholar 

  25. Willenbacher N. and Spiering H., J. Phys. C., 21 (1988) 1423.

    Article  ADS  Google Scholar 

  26. Spiering H. and Willenbacher N., J. Phys.: Condens. Matter, 1 (1989) 10089.

    Article  ADS  Google Scholar 

  27. Meissner E., Köppen H., Köhler C. P., Spiering H. and Gütlich P., Hyperfine Interact, 36 (1987) 1.

    Article  ADS  Google Scholar 

  28. Köhler C. P., Jakobi R., Meissner E., Wiehl L., Spiering H. and Gütlich P., J. Phys. Chem. Solids, 51 (1990) 239.

    Article  Google Scholar 

  29. Drickamer H. G. and Frank C. W., Electronic Transitions and the High Pressure Chemistry and Physics of Solids (Chapman and Hall, London), 1973.

    Google Scholar 

  30. Long F. and Hutchinson B. B., Inorg. Chem., 26 (1987) 608.

    Article  Google Scholar 

  31. Grandjean F., Long G. J., Hutchinson B. B., Ohlhausen L., Neill P. and Holcomb J. D., Inorg. Chem., 28 (1989) 4406.

    Article  Google Scholar 

  32. Yu Z., Schmitt G., Hofmann S., Spiering H., Hsia Y. F. and Gütlich P., Hyperfine Interact., 93 (1994) 1459.

    Article  ADS  Google Scholar 

  33. Yu Z., Schmitt G., Böres N., Spiering H. and Gütlich P., J. Phys.: Condens. Matter, 7 (1995) 777.

    Article  ADS  Google Scholar 

  34. Franke P. L., Haasnoot J. G. and Zuur A. P., Inorg. Chim. Acta, 59 (1982) 5.

    Article  Google Scholar 

  35. Müller E. W., Spiering H. and Gütlich P., J. Chem. Phys., 79 (1983) 1439.

    Article  ADS  Google Scholar 

  36. Decurtins S., Gütlich P., Hasselbach K. M., Hauser A. and Spiering H., Inorg. Chem., 24 (1985) 2174.

    Article  Google Scholar 

  37. Jung J., Spiering H., Yu Z. and Gütlich P., Hyperfine Interact., 95 (1995) 107.

    Article  ADS  Google Scholar 

  38. Wiehl L.Acta. Cryst. B, 49 (1993) 289.

    Article  Google Scholar 

  39. Hinek R., PhD thesis, Johannes Gutenberg-Universität Mainz (1995).

  40. Poganiuch P., Decurtins S. and Gütlich P., J. Am. Chem. Soc., 112 (1990) 3270.

    Article  Google Scholar 

  41. Decurtins S., Gütlich P., Köhler C. P., Spiering H. and Hauser A., Chem. Phys. Lett., 105 (1984) 1.

    Article  ADS  Google Scholar 

  42. Hauser A., Chem. Phys. Lett., 124 (1986) 543.

    Article  ADS  Google Scholar 

  43. Hauser A., J. Chem. Phys., 94 (1991) 2741.

    Article  ADS  Google Scholar 

  44. Buhks E., Navon G., Bixon M. and Jortner J., J. Am. Chem. Soc., 102 (1980) 2918.

    Article  Google Scholar 

  45. Adler P., Spiering H. and Gütlich P., Inorg. Chem., 26 (1987) 3840.

    Article  Google Scholar 

  46. Adler P., Poganiuch P. and Spiering H., Hyperfine Interact., 52 (1989) 47.

    Article  ADS  Google Scholar 

  47. Adler P., Spiering H. and Gütlich P., J. Phys. Chem. Solids, 50 (1989) 587.

    Article  ADS  Google Scholar 

  48. Hinek R., Gütlich P. and Hauser A., Inorg. Chem., 33 (1994) 567.

    Article  Google Scholar 

  49. Sugiyarto K. H. and Goodwin H. A., Aust. J. Chem., 41 (1988) 1645.

    Article  Google Scholar 

  50. Buchen T., Gütlich P. and Goodwin H., Inorg. Chem.33 (1994) 4573.

    Article  Google Scholar 

  51. Cecconi F., Di Vaira M., Midollini S., Orlandini A. and Sacconi L., Inorg. Chem., 20 (1981) 3423.

    Article  Google Scholar 

  52. König E., Ritter G., Kulshrechta S. K., Waigel J. and Sacconi L., Inorg. Chem., 23 (1984) 1241.

    Article  Google Scholar 

  53. Wu C.-C., Jung J., Sena K. M., Gütlich P. and Hendrickson D. N., to be published.

  54. Ensling J., Gütlich P., Hasselbach K. M. and Fitzsimmons B. W., Chem. Phys. Lett., 42 (1976) 232.

    Article  ADS  Google Scholar 

  55. Ensling J., Fitzsimmons B. W., Gütlich P. and Hasselbach K. M., Angew. Chem., 9 (1970) 637.

    Article  Google Scholar 

  56. Fleisch J. and Gütlich P., Chem. Phys. Lett., 42 (1976) 237.

    Article  ADS  Google Scholar 

  57. Fleisch J. and Gütlich P., Chem. Phys. Lett., 45 (1977) 29.

    Article  ADS  Google Scholar 

  58. Fleisch J., Gütlich P. and Köppen H., Radiochem. Radioanalyt. Lett., 42 (1980) 279.

    Google Scholar 

  59. Gütlich P. and Köppen H., J. Phys. (Paris), 41 C1 (1980) 311.

    Google Scholar 

  60. Hennen C., Master's thesis, Johannes Gutenberg-Universität Mainz (1986).

  61. Sano H. and Gütlich P., Hot Atom Chemistry in Relation to Mössbauer Emission Spectroscopy, in Hot Atom Chemistry, edited by T. Matsuura (Kodanski, Tokyo) 1984, pp. 265–302.

    Google Scholar 

  62. Albrecht R., Alflen M., Gütlich P., Kajcsos Zs., Schulze R., Spiering H. and Tuczek F., Nucl. Instrum. Methods A, 257 (1987) 209.

    Article  ADS  Google Scholar 

  63. Hennen C., Alflen M., Spiering H. and Gütlich P., Hyperfine Interact., 56 (1990) 1527.

    Article  ADS  Google Scholar 

  64. Kahn O., Kröber J. and Jay C., Adv. Mater., 4 (1992) 718.

    Article  Google Scholar 

  65. Köppen H., Müller E. W., Köhler C. P., Spiering H., Meissner E. and Gütlich P., Chem. Phys. Lett., 91 (1982) 348.

    Article  ADS  Google Scholar 

  66. Meissner E., PhD thesis, Johannes Gutenberg-Universität Mainz (1984).

  67. Müller E. W., Ensling J., Spiering H. and Gütlich P., Inorg. Chem., 22 (1983) 2074.

    Article  Google Scholar 

  68. Hauser A., Gütlich P. and Spiering H., Inorg. Chem., 25 (1986) 4245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Harry B. Gray on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gütlich, P., Jung, J. Fascinating electronic games in iron complexes. Il Nuovo Cimento D 18, 107–136 (1996). https://doi.org/10.1007/BF02458887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458887

PACS

PACS

PACS

PACS

Navigation