Skip to main content
Log in

Binding of tetrahedral halocomplexes of polyvalent metal ions in an ionic model

  • Published:
Il Nuovo Cimento D

Summary

Long-lived tetrahedral coordination of polyvalent metal ions by halogen ions is known to be stable in a number of liquid halide mixtures. We evaluate the binding of isolated tetrahedral halocomplexes for the alkaline earth metals and for Al, with the main aim of assessing their stability and their bond length. An appropriate interionic force model is available for the halides of Mg, Ca, Sr and Ba from analyses of cohesion in their crystalline state and in dihalide molecules. The model is extended to the halides of Be and Al with the adjustment of a parameter to the measured Be-F and Al-Cl bond lengths in liquid mixtures. The semi-quantitative usefulness of the model is confirmed by comparisons with bond lengths for other Al halides and with extensive information on local vibrational frequencies from Raman scattering and infrared emission experiments on liquid halides.

Riassunto

È noto che ioni di metalli polivalenti in numerose miscele di alogenuri fusi sono coordinati tetraedricamente da ioni alogeno. Nel lavoro si calcolano le proprietà di legame di complessi tetraedrici isolati formati con gli alogeni dai metalli alcalino-terrosi e dall’Al, con particolare attenzione alla loro stabilità e lunghezze di legame. Si usa a questo scopo un modello ionico derivato per gli alogenuri di Mg, Ca, Sr e Ba da proprietà coesive delle fasi solida e gassosa, estendendolo poi agli alogenuri di Be e di Al. L’utilità semiquantitativa del modello è confermata dal confronto con dati sperimentali per alogenuri liquidi, riguardanti principalmente le frequenze vibrazionali locali da esperimenti di diffusione Raman.

Резюме

Известно, что долгоживущие тетраэдрические комплексы поливалентных металлических ионов, благоларя ионам галогенов, являются стабильными в ряде жидких смесей галогенидов. Мы оцениваем связь изолированных тетраэдрических галокомплексов для щелочноземельных металлов и для Al с целью определения их устойчивости и длины связи. Предлагается соответствующая модель межионной силы для галогенидов Mg, Ca, Sr и Ba из анализа когезии в кристаллическом состоянии и в молекулах дигалогенидов. Эта модель обобщается на случай галогенидов Be и Al с подгонкой параметра по измеренным длинам связи Be−F и Al−Cl в жидких смесях. Полуколичественные результаты модели подтверждаются с помощью сравнения длин для других галогенидов алюминия и с помощью имеющейся информации о локальных колебательных частотах из комбинационного рассеяния и экспериментов по инфракрасномы излучению в жидких галогенидах.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Takahashi, T. Muneta, N. Koura andH. Ohno:J. Chem. Soc. Faraday Trans. 2,81, 319 and 1107 (1985);S. Takahashi, K. Maruoka, N. Koura andH. Ohno:J. Chem. Phys.,84, 408 (1986).

    Article  Google Scholar 

  2. S. Biggin, S. Cummings, J. E. Enderby andM. Blander:Proceedings of the Molten Salts Symposium (Las Vegas, Cal., 1985).

  3. G. M. Begun, C. R. Bosten, G. Torsi andG. Mamantov:Inorg. Chem.,10, 886 (1971).

    Article  Google Scholar 

  4. H. A. Øye, E. Rytter, P. Klæboe andS. J. Cyvin:Acta Chem. Scand.,25, 559 (1971).

    Article  Google Scholar 

  5. J. Hvistendahl, P. Klæboe, E. Rytter andH. A. Øye:Inorg. Chem.,23, 706 (1984).

    Article  Google Scholar 

  6. B. Gilbert, G. Mamantov andG. M. Begun:J. Chem. Phys.,62, 950 (1975).

    Article  ADS  Google Scholar 

  7. A. Manteghetti andA. Potier:Spectrochim. Acta A,38, 141 (1982).

    Article  Google Scholar 

  8. F. Vaslow andA. H. Narten:J. Chem. Phys.,59, 4949 (1973).

    Article  ADS  Google Scholar 

  9. A. S. Quist, J. B. Bates andG. E. Boyd:J. Phys. Chem.,76, 78 (1972).

    Article  Google Scholar 

  10. V. A. Maroni:J. Chem. Phys.,55, 4789 (1971).

    Article  ADS  Google Scholar 

  11. M. H. Brooker:J. Chem. Phys.,63, 3054 (1975).

    Article  ADS  Google Scholar 

  12. V. D. Prisyazhnyi, S. P. Baranov andG. P. Sunegin:Ž. Neorg. Khim.,23, 1678 (1978) [English translation:Russian J. Inorg. Chem.,23, 923 (1978)].

    Google Scholar 

  13. K. Sakai, T. Nakamura, N. Umesaki andN. Iwamoto:Phys. Chem. Liq.,14, 67 (1984).

    Google Scholar 

  14. H. H. Emons, W. Horlbeck andD. Kiessling:Z. anorg. allg. Chem.,510, 152 (1984).

    Article  Google Scholar 

  15. W. Bues, M. Atapour andG. Popperl:163rd Meeting, The Electrochem Soc. (San Francisco, Cal., 1983).

  16. O. J. Kleppa andF. G. McCarty:J. Phys. Chem.,70, 1249 (1966);T. Østvold:J. Phys. Chem.,76, 1616 (1972).

    Google Scholar 

  17. L. P. Davis, C. J. Dymek, J. J. Stewart, H. P. Clark andW. J. Lauderdale:J. Am Chem. Soc.,107, 5041 (1985).

    Article  Google Scholar 

  18. M. L. Saboungi, A. Rahman andM. Blander:J. Chem. Phys.,80, 2141 (1984);M. Blander, M. L. Saboungi andA. Rahman:J. Chem. Phys.,85, 3995 (1986).

    Article  ADS  Google Scholar 

  19. Z. Akdeniz andM. P. Tosi:Phys. Chem. Liq.,17, 91 (1987);Z. Akdeniz, Wang Li andM. P. Tosi:Europhys. Lett.,5, 613 (1988).

    Google Scholar 

  20. A preliminary report has been presented at theAdriatico Research Conference on Interatomic Forces in Relation to Defects and Disorder in Condensed Matter (Trieste, August 1987): seeA. Ferrante, Wang Li andM. P. Tosi:Philos. Mag. A,58, 13 (1988).

  21. G. Galli andM. P. Tosi:Nuovo Cimento D,4, 413 (1984).

    ADS  Google Scholar 

  22. W. R. Busing:Trans. Am. Crystallogr. Assoc.,6, 57 (1970).

    Google Scholar 

  23. P. S. Yuen, R. M. Murfitt andR. L. Collin:J. Chem. Phys.,61, 2383 (1974).

    Article  ADS  Google Scholar 

  24. See, for instance,J. R. Ferraro andJ. S. Ziomek:Introductory Group Theory (Plenum Press, New York, N. Y., 1975).

    Google Scholar 

  25. S. S. Jaswal andT. P. Sharma:J. Phys. Chem. Solids,34, 509 (1973).

    Article  ADS  Google Scholar 

  26. P. Akishin andV. P. Spiridonov:Kristallografiya,2, 475 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Tosi, M.P. Binding of tetrahedral halocomplexes of polyvalent metal ions in an ionic model. Il Nuovo Cimento D 10, 1497–1508 (1988). https://doi.org/10.1007/BF02454215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02454215

PACS 61.25

Navigation