Skip to main content
Log in

Mixture approach to plasmas with dissipative phenomena

  • Published:
Il Nuovo Cimento D

Summary

On appealing to the recent well-established theory of mixtures, plasmas are described in a systematic way as mixtures of interacting charged-fluid constituents. Viscosity and heat conduction of the constituents are accounted for through the formalism of hidden variables so as to allow wave front propagation. A thermodynamic analysis is performed by having recourse to the second law in the form of the Clausius-Duhem inequality, thus providing a thorough scheme of dissipative effects in plasmas. For example, as an outstanding result of the investigation, it follows that, in the case of constituents at different temperatures, a transfer of linear momentum is unavoidably associated with a correspondent transfer of energy. It is then shown how, in the limiting approximation of magnetofluidodynamics, the process of electric conduction may be embodied into the framework of dissipative effects.

Riassunto

Sulla base della teoria delle misture elaborata negli ultimi anni si trattano i plasmi in maniera sistematica come misture di costituenti fluidi carichi interagenti. La viscosità e la conduzione di calore sono descritti mediante il formalismo delle variabili nascoste in modo da rendere ammissibile la propagazione di fronti d'onda. L'analisi della compatibilità del modello con la termodinamica è effettuata considerando la seconda legge nella forma della diseguaglianza di Clausius-Duhem; come risultato si ottiene uno schema completo di effetti dissipativi nei plasmi. Per esempio, si mostra che nel caso di costituenti a temperatura diversa un trasferimento d'impulso è inevitabilmente legato ad un corrispondente trasferimento di energia. Infine si mostra che, nel caso limite della magnetofluidodinamica, il fenomeno della conduzione elettrica può essere inglobato nel contesto degli effetti dissipativi.

Резюме

На основе недавно развитой теории смесей описывается плазма систематическим образом, как смесь взаимодействуюших заряженных жидких компонент. Вязкость и теплопроводность этих компонент объясняются с помошью формализма скрытых переменных, что позволяет описать распространение волнового фронта. Проводится анализ совместимости предложенной модели со вторым законом термодинамики в форме неравенства Клаузиуса-Духема. В результате этого получается полная схема диссипативных эффектов в плазме. Например, показывается, что в случае компонент при различных температурах перенос импульса неизбежно связан с соответствуюшим переносом энергии. Затем показывается, как в предельном случае магнитной гидродинамики процесс электропроводности может быть включен в рамки диссипативных явлений.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See,e.g.,B. Lehnert:Suppl. Nuovo Cimento,13, 59 (1959);P. A. Sturrock, Editor:Plasma Astrophysics, Proceedings S.I.F., Course XXXIX (New York, N. Y., 1967);N. A. Krall andA. W. Trivelpiece:Principles of Plasma Physics (New York, N. Y., 1973);H. Demiray andA. C. Eringen:Plasma Phys.,15, 903 (1973);R. Z. Segdeev:Rev. Mod. Phys.,51, 1, 11 (1979);G. Schmidt:Physics of High Temperature Plasmas (New York, N. Y., 1979), and references therein.

    MATH  Google Scholar 

  2. H. Alfvén:Phys. Today,24, 28 (1971).

    Google Scholar 

  3. R. A. Breuer andJ. Ehlers:Proc. R. Soc. London Ser. A,370, 389 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Spitzer:Physics of Fully Ionized Gases (New York, N. Y., 1962).

  5. A. N. Kaufman:Dissipative effects, inPlasma Physics in Theory and Application, edited byW. B. Kunkel (New York, N. Y., 1966).

  6. P. C. Clemmow andJ. P. Dougherty:Electrodynamics of Particles and Plasmas (Reading, Mass., 1969).

  7. R. M. Bowen:Theory of mixtures, inContinuum Physics, edited byA. C. Eringen, Vol. III (New York, N. Y., 1976).

  8. The viscosity of a fully ionized gas was analysed byS. I. Braginskii:Sov. Phys. JETP,6, 358 (1958), who showed that viscosity is due primarily to positive ions, the viscous stresses due to electrons being generally negligible.

    MathSciNet  ADS  Google Scholar 

  9. See,e.g.,F. Bampi andA. Morro:J. Math. Phys. (N. Y.),21, 1201 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  10. B. D. Coleman andM. E. Gurtin:J. Chem. Phys.,47, 597 (1967);W. A. Day:Arch. Ration. Mech. Anal.,62, 367 (1976);A. Morro:Arch. Mech.,32, 145 (1980).

    Article  ADS  Google Scholar 

  11. M. Carrassi andA. Morro:Nuovo Cimento B,9, 321 (1972);13, 281 (1973).

    ADS  Google Scholar 

  12. A. Morro:Int. J. Eng. Sci.,18, 913 (1980).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. A. Morro:Rend. Sem. Mat. Univ. Padova,64, 59 (1980).

    MathSciNet  Google Scholar 

  14. F. Bampi andA. Morro:J. Non-Equilib. Thermodyn.,6, 1 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  15. A different look at balance equations for mixtures is delivered in appendix A. For a comprehensive account of the theory of mixtures the interested reader is referred to ref. (7)R. M. Bowen:Theory of mixtures, inContinuum Physics, edited byA. C. Eringen, Vol. III (New York, N. Y., 1976).

  16. See,e.g.,A. N. Kaufman:Dissipative effects, inPlasma Physics in Theory and Application, edited byW. B. Kunkel (New York, N. Y., 1966).

  17. See,e.g.,P. C. Clemmow andJ. P. Dougherty:Electrodynamics of Particles and Plasmas, sect.5 and6 (Reading, Mass., 1969).

  18. The reader interested in a more refined approach to materials with hidden variables is referred to ref. (10).B. D. Coleman andM. E. Gurtin:J. Chem. Phys.,47, 597 (1967);W. A. Day:Arch. Ration. Mech. Anal.,62, 367 (1976);A. Morro:Arch. Mech.,32, 145 (1980).

    Article  ADS  Google Scholar 

  19. Of course, owing to the principle of material-frame indifference, the response functions φ and the evolution functionh should depend onv α andW α only through the differencesv α-v β,W α-W β, α, β=−1, 0,..., ν.

  20. See,e.g.,F. Bampi andA. Morro:Found. Phys.,10, 905 (1980).

    ADS  Google Scholar 

  21. F. Bampi andA. Morro:J. Phys. A,14, 631 (1981).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. On appealing to the arbitrariness of the external-body forcesn β m β F β occurring in eq. (2.4), the accelerationsv′ β may be viewed as arbitrary vectors.

  23. We remind the reader that the diagonal terms of the matricesN, M, K have no physical meaning.

  24. To avoid misunderstandings, in this section we denote the constituents by the indices e (electrons), a (atoms), i (ions) instead of −1, 0, 1.

  25. C. A. Truesdell:Rational Thermodynamics (New York, N. Y., 1969).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bampi, F., Morro, A. Mixture approach to plasmas with dissipative phenomena. Il Nuovo Cimento D 1, 169–185 (1982). https://doi.org/10.1007/BF02450076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450076

Keywords

Navigation