Skip to main content
Log in

Strain of concrete at peak compressive stress for a wide range of compressive strengths

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The increasing interest in the strain behaviour of concrete is not restricted to everyday mean compressive strengths but now extends to very high values. In this paper it is shown that the various proposals for assessing the value ε0 of the strain at the peak of the compressive strength of concrete appear sufficiently precise, at maximum, for a limited range of strengths, This had led us to estimate ε0 for a wide range of strengths, and the new formula in this paper seems to perform much better when applied to the experimental data obtained in the very wide range of strengths possible today.

Resume

L'intérêt toujours croissant pour le comportement en déformation du béton ne se limite pas aux résistances moyennes en compression normales, mais il s'étend aussi aux valeurs de pointe atteignables aujourd'hui. Dans cet article, on montre que les différentes formules proposées pour l'évaluation de la valeur ε0 de la déformation au pic de la résistance en compression du béton sont tout juste assez précises pour un éventail limité de résistances. Ceci nous a conduits à évaluer ε0 pour un large éventail et la proposition nouvelle exposée ici offre une bien meilleure concordance avec les données expérimentales obtenues dans l'éventail de résistances le plus étendu à ce jour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dei Poli, S., ‘Microfessurazione, Leggi Costitutive e Condizioni di Rottura del Calcestruzzo in Stati di Tensione Mono e Pluriassiali’, Corso di perfezionamento per le costruzioni in cemento armato ‘Fratelli Pesenti’, Politecnico di Milano (1978) p. 290.

  2. Shah, S. P. and Ahmad, S. H., ‘Structural properties of high strength concrete and its implication for precast prestressed concrete’,Portland Cement Inst. J. 30, No. 6 (1985) 92–119.

    Google Scholar 

  3. Hognestad, E., Hanson, N. W. and McHenry, D., ‘Concrete stress distribution in ultimate strength design’,ACI J. 52, No. 4 (1955) 455–480.

    Google Scholar 

  4. Dilger, W. H., Koch, R. and Kowalczyk, R., ‘Ductility of plain and confined concrete under different strain rates’,ACI J. 81 (1984) 73–81.

    Google Scholar 

  5. Ahmad, S. H. and Shah, S. P., ‘Behavior of Hoop Confined Concrete Under High Strain Rates’,ACI J. 82, No. 5 (1985) 634–647.

    Google Scholar 

  6. Idem, ‘Stress-strain curves of concrete confined by spiral reinforcement’,ACI J. 79, No. 46 (1982) 484–490.

    Google Scholar 

  7. Wischers, G., ‘Application and Effects of Compressive Loads on Concrete’, (Betonverlag GmbH, Düsseldorf, 1979) pp. 31–56.

    Google Scholar 

  8. Ahmad, S. H. and Shah, S. P., ‘Complete Stress-Strain Curves of Concrete and Nonlinear Design,’ Progress Report, National Science Foundation Grant PFR 79-22878 (Universityof Illinois at Chicago Circle, August 1979).

  9. Galeota, D., Giammateo, M. M., Grillo, F., ‘Calestruzzi leggeri e normali—Legame costitutivo per elementi non confinati sottoposti a carico assiale monotono’,Giorn. Genio Civile 10-11-12 (1984) 387–400.

    Google Scholar 

  10. Idem, Ahmad, S. H. and Shah, S. P. ‘Legame costitutivo di calcestruzzi confinati normali a leggeri, sottoposti a compressione assiale’. Seminario A.I.C.A.P sui Calcestruzzi Speciali.-L'Aquila, 5–6 Ottobre 1988.

  11. Scott, B. D., Park, R. and Priestley, M. J. N., ‘Stress-strain behavior of concrete confined by overlapping hoop at low and high strain rates’,ACI J. (1982) 13–27.

  12. Kaar, P. H., Hanson, N. W. and Capell, H. T., ‘Stress-strain characteristic of high strength concrete’, Research and Development, Bulletin RD051-01D, (Portland Cement Association, Skokie, Illinois, 1977).

    Google Scholar 

  13. Wang, P. T., Shah, S. P. and Naaman, A. E., ‘Stress-strain curves of normal and lightweight concrete in compression’,ACI J. 75, No. 11 (1978), 603–611.

    Google Scholar 

  14. De Stefano, A. and Sabia, D., ‘Effetti della cerchiatura elicoidale sui comportamento meccanico di cilindri di calcestruzzo ad alta resistenza’, Atti del Dipartimento di Ingegneria Strutturale, Politecnico di Torino, Gennaio 1991.

  15. Smith, G. M. and Young, L. E., ‘Ultimate flexural analysis based on stress-strain curves of cylinders’,ACI J. 53, No. 6 (1956) 597–609.

    Google Scholar 

  16. Barnard, P. R., ‘Researches into the complete stress-strain curve for concrete’,Mag. Concr. Res. 16, No. 49 (1964) 203–210.

    Google Scholar 

  17. Park, R. and Paulay, T., ‘Reinforced Concrete Structures’ (Department of Civil Engineering, University of Canterbury, New Zealand, 1975) pp. 11–43.

    Google Scholar 

  18. Nilson, H. and Slate, O. ‘Structural design properties of very high strength concrete’, Second Progress Report, NSF Grant ENG 7805124 (School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1979).

    Google Scholar 

  19. ‘Norme Tecniche per L'esecuzione delle Opere in Cemento Armato Normale e Precompresso e per le Strutture Metalliche, D.M.14-2-1992. Suppl. G.U. Repubblica Italiana No. 65.

  20. ‘Eurocode N.2., Design of Concrete Structures’ (October 1991).

  21. ‘C.E.B.-FIP Model Code 1990’, Bulletin d'Information No. 203, Chap. 2 (July 1991).

  22. Szulczynski, T. and Sozen, M. A., ‘Load-deformation characteristics of reinforced concrete prisms with rectilinear transverse reinforcement’, Structural Research Series No. 224, Civil Engineering Studies, (University of Illinois, Urbana, IL, September 1961).

    Google Scholar 

  23. Roy, H. E. H. and Sozen, M. A., ‘A model to simulate the response of concrete to multi-axial loading’, Structural Research Series, No. 268, Civil Engineering Studies (University of Illinois, Urbana, IL, June 1963).

    Google Scholar 

  24. Liebenberg, A. C. ‘A stress strain function for concrete subjected to short-term loading’,Mag. Concr. Res. 14, No. 41 (1962) 85–99.

    Google Scholar 

  25. Kent, D. C. and Park, R., ‘Flexural members with confined concrete’,Proc. ASCE,97 (1971) 1969–1990.

    Google Scholar 

  26. Popovics, S., ‘A numerical approach to the complete stress-strain curves for concrete’,Cement Concr. Res. 3 (1973) 583–599.

    Article  Google Scholar 

  27. Sahlin, S. ‘Effect of far-advanced compressive strains of concrete in reinforced concrete beams submitted to bending moments.Betong,40, No. 3 (1955), Library Translation No. 65, Cement and Concrete Association, London.

    Google Scholar 

  28. Young, L. E., ‘Simplifying ultimate flexural theory by maximizing the stress block’,ACI J. 57, No. 5 (1960) 549–556.

    Google Scholar 

  29. Smith, G. M. and Yung, L. E., ‘Ultimate theory in flexure by exponential function’Ibid 52, No. 3 (1955) 349–360.

    Google Scholar 

  30. Popovics, S., ‘A review of stress-strain relationships for concrete’,Ibid 67, No. 11 (1970) 243–248.

    Google Scholar 

  31. Ros, M. ‘Material-technological foundation and problems of reinforced concrete’, Bericht No. 162 (Eidgenossische Materialprüfungs und Versuchsanstalt für Industrie, Bauwesen and Gewerbe, Zurich, Switzerland, 1950).

    Google Scholar 

  32. Tadros, G. S., ‘Plastic rotation of reinforced concrete members subjected to bending, axial load and shear’, Ph.D. Thesis, University of Calgary, 1970.

  33. Sargin, M., ‘Stress-strain relationships for concrete and the analysis of structural concrete sections’, Study No. 4, Solid Mechanics Division (University of Waterloo, Ontario, Canada 1971).

    Google Scholar 

  34. Carreira, D. J. and Chu, K. H., ‘Stress-strain relationship for plain concrete in compression’,ACI J. 82 (1985) 797–804.

    Google Scholar 

  35. Fafitis, A. and Shah, S. P., ‘Predictions of ultimate behavior of confined columns subjected to large deformations’,Ibid 82, No. 4 (1985) 423–433.

    Google Scholar 

  36. Saenz, L. P., ‘Discussion of a paper by P. Desayi and S. Krishnan, ‘Equation for the stress strain curve of concrete’,Ibid 61, No. 9 (1964) 1229–1235.

    Google Scholar 

  37. Palotàs, L., ‘Characteristics of quality concrete (A minosegi beton mértékado alapadatai)’ Minoségi beton Konferencia, Budapest 1960, pp. 9–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Nicolo, B., Pani, L. & Pozzo, E. Strain of concrete at peak compressive stress for a wide range of compressive strengths. Materials and Structures 27, 206–210 (1994). https://doi.org/10.1007/BF02473034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473034

Keywords

Navigation