Skip to main content
Log in

INFLUENCE OF A MYCORRHIZAL FUNGUS AND/OR RHIZOBIUM ON GROWTH AND BIOMASS PARTITIONING OF SUBTERRANEAN CLOVER EXPOSED TO OZONE

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The influence of soilborne symbionts such as rhizobia or mycorrhizal fungi on plant response to ozone (O3) has not been well defined. Leguminous plants in the field are infected by both types of organisms, which influence plant nutrition and growth. We studied the effects of infection with Rhizobium leguminosarum biovar trifolii and/or Gigaspora margarita on response of subterranean clover (Trifolium subterraneum L. cv Mt. Barker) to O3. Exposures were conducted in greenhouse CSTR chambers using four O3 concentrations [charcoal-filtered (CF), 50, 100, or 150 ppb; 6 h day-1, 5 day wk-1 for 12 weeks] as main plots (replicated). Four inoculum types were subplot treatments, i.e., inoculated with one, both, or neither microorganisms. At 2-wk intervals, plants were exposed to 14CO2 and harvested 24 h later for determination of biomass and 14C content of shoots and roots. Ozone at 100 or 150 ppb suppressed clover growth during the experiment. Inoculation with G. margarita alone suppressed clover growth by the last two harvests, whereas R. leguminosarum alone enhanced growth during this time period. When both symbionts were present, the plants grew similarly to the noninoculated controls. Shoot/root ratios were increased by 100 or 150 ppb O3 compared to that for CF-treated plants. Shoot/root ratios were greater for all inoculated plants compared to noninoculated controls. Under low O3 stress (CF or 50 ppb), plants inoculated with both R. leguminosarum and G. margarita transported a greater proportion of recent photosynthate (14C) to roots than did noninoculated plants; we attribute this to metabolic requirements of the microorganisms. At the highest level of O3 stress (150 ppb), this did not occur, probably because little photosynthate was available and the shoots retained most of it for repair of injury. Statistically significant interactions occurred between O3 and inoculum types for shoot and total biomass. When averaged across harvests, 50 ppb O3 suppressed biomass in the plants inoculated with G. margarita alone. Apparently, the mycorrhizal fungus is such a significant C drain that even a small amount of O3 stress suppresses plant growth under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher, R. G. and Wellburn, A. R. (eds.): 1994, Plant Responses to the Gaseous Environment, Chapman and Hall, London, U.K.

    Google Scholar 

  • Bethlenfalvay, G. J., Brown, M. S. and Pakovsky, R. S.: 1982, Phytopathology 72, 889-893.

    Google Scholar 

  • Box, G. E. P. and Cox, D. R.: 1964, J. R. Stat. Soc. Ser. B 26, 211-243.

    Google Scholar 

  • Brewer, P. F. and Heagle, A. S.: 1983, Phytopathology 73, 1035-1040.

    Google Scholar 

  • Cooley, D. R. and Manning, W. J.: 1987, Environ. Pollut. 47, 95-113.

    Google Scholar 

  • Flagler, R. B., Patterson, R. P., Heagle, A. S. and Heck, W. W.: 1987, Crop Sci. 27, 1177-1184.

    Google Scholar 

  • Heck, W. W., Philbeck, R. B. and Dunning, J. A.: 1978, Agricultural Research Service, Series No. ARS-S-181, pp. 32.

  • McCool, P. M. and Menge, J. A.: 1983, New Phytol. 94, 241-247.

    Google Scholar 

  • McCool, P. M. and Menge, J. A.: 1984, Soil Biol. Biochem. 16, 425-427.

    Google Scholar 

  • Miller, J. E.: 1988, in Heck, W. W., Taylor, O. C. and Tingey, D. T. (eds.), Assessment of Crop Loss From Air Pollutants, Elsevier Science Publishers, London, U.K., pp. 287-314.

    Google Scholar 

  • Modjo, H. S. and Hendrix, J. W.: 1986, Phytopathology 76, 688-691.

    Google Scholar 

  • Montes, R. A., Blum, U., Heagle, A. and Volk, R. J.: 1983, Can. J. Bot. 61, 2159-2168.

    Google Scholar 

  • Rawlings, J. O.: 1988, Applied Regression Analysis: A Research Tool, Wadsworth and Brooks, Pacific Grove, CA.

    Google Scholar 

  • Safir, G. R.: 1994, in Pfleger, F. L. and Linderman, R. G. (eds.), Mycorrhizae and Plant Health, APS Press, St. Paul, MN, pp. 239-259.

    Google Scholar 

  • SAS Institute, Inc.: 1988, SAS/AF User's Guide: Version 6.03 Edition, SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Shafer, S. R. and Schoeneberger, M. M.: 1991a, Environ. Pollut. 73, 163-177.

    Google Scholar 

  • Shafer, S. R. and Schoeneberger, M. M.: 1991b, in Keister, D. L. and Creagan, P. B. (eds.), The Rhizosphere and Plant Growth, Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 377.

    Google Scholar 

  • Tingey, D. T. and Blum, U.: 1973, J. Environ. Qual. 2: 341-342.

    Google Scholar 

  • Vincent, J. M.: 1970, A Manual for the Practical Study of Root-Nodule Bacteria, International Biological Program Handbook 15. Blackwell Scientific Publication, Ltd., Oxford. p. 164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MILLER, J.E., SHAFER, S.R., SCHOENEBERGER, M.M. et al. INFLUENCE OF A MYCORRHIZAL FUNGUS AND/OR RHIZOBIUM ON GROWTH AND BIOMASS PARTITIONING OF SUBTERRANEAN CLOVER EXPOSED TO OZONE. Water, Air, & Soil Pollution 96, 233–248 (1997). https://doi.org/10.1023/A:1026496420809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026496420809

Navigation