Skip to main content
Log in

Inorganic chemical investigations in the forest biosphere reserve near Kalinin, USSR

II. The distribution of lanthanide elements in the vegetation cover

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Lanthanides (rare-earth elements) were quantitatively determined by atomic emission spectrometry/inductively coupled plasma (AES/ICP) in various plants (Picea abies, Vaccinium vitis-idaea, Vaccinium myrtillus, Polytrichum commune, Sphagnum spec., and Hypogymna physodes) collected in the Forest Biosphere Reserve 350 km northwest of Moscow (USSR). Compared with previously established background values for lanthanide elements in central Europe, the rare elements determined in the USSR samples appear in lower concentrations. The lichen Hypogymna physodes can be characterized as an extreme accumulator of lanthanide elements up to a factor of ten compared to the other plant species collected in the Forest Biosphere Reserve. With regard to the lanthanide contents in plants collected in a German reference forest ecosystem, it can be seen, that the German samples represent without exception higher lanthanide values. Leaves of Vaccinium vitis-idaea display contents 3–4 times higher, leaves of Vaccinium myrtillus show concentrations higher by a factor of about 0.3, approximately twice the contents were determined in the German samples of Polytrichum formosum and P. commune, and the values in the German samples of the Sphagnum species are about 3 times that of the Soviet samples. As pointed out for pollution by heavy metals in part I of this series, the Forest Biosphere Reserve is generally characterized by lower contents of lanthanides in the vegetation cover than a comparable forest ecosystem (Grasmoor near Osnabrück, F.R.G.) in central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bowen, H. J. M. 1979. Environmental chemistry of the elements. Academic Press, London.

    Google Scholar 

  • Cercasov, V. & Heller, R. 1980. Application of 14 MeV neutron activation analysis of the determination of cerium and samarium markers in biological materials. J. Radioanal. Chem. 60: 453–460.

    Google Scholar 

  • Coleman, N. T. 1970. Accumulation of cerium, yttrium and cesium in plants as affected by their soil chemistry and the aeration of the soil. U.S. Gov. Res. Develop. Rep. 70, 43.

  • Danne, R. & Fourcy, A. 1970. Detection of rare earths in plants using radioactivation methods — application of the method in geochemical ecology. U.S. Gov. Res. Develop. Rep. 70, 39.

  • Ernst, W. H. O. & Joosse Van Damme, E. N. G. 1983. Umweltbelastung durch Mineralstoffe. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Fryer, B. J. & Taylor, R. P. 1987. Rare earth element distribution in uranites: implications for ore genesis. Chem. Geol. 63: 101–108.

    Google Scholar 

  • Henzler, T. E., Korda, R. J., Helmke, P. A., Anderson, M. R., Jimenez, M. M. & Haskin, L. A. 1974. An accurate procedure for multi element neutron activation analysis of trace elements in biological materials. J. Radioanal. Chem. 20: 649–663.

    Google Scholar 

  • Irgolic, K. J. & Martell, A. E. (eds.) 1985. Environmental inorganic chemistry. VCH-Publisher, Weinheim.

    Google Scholar 

  • Iyengar, G. V. 1989. Elemental analysis of biological systems, Vol. 1: Compositional and methodological aspects. CRC Press, Boca Raton.

    Google Scholar 

  • Jiao, Kui, Zhang, Manping & Gao, Xiaoxia 1982. Electroanalytical determination of microamount of rare earth elements in plants by using polarographic complex adsorptive waves. Beijing Daxue Xuebao, Ziran Kexueban 6: 77–84.

    Google Scholar 

  • Kabata-Pendias, A. & Pendias, H. 1984. Trace elements in soils and plants. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kovacs, M., Nyary, I. & Toth, L. 1984. The microelement content of some submerged and floating aquatic plants. Acta Bot. Hung. 30: 173–186.

    Google Scholar 

  • Koyama, M., Shirakawa, M., Takada, J., Katayama, Y. & Matsubara, T. 1987. Trace elements in land plants: concentration ranges and accumulators of rare earths, barium, radium, manganese, iron, cobalt and heavy halogens. J. Radioanal. Nucl. Chem. 112: 489–506.

    Google Scholar 

  • Laul, J. C., Weimer, W. C. & Rancitelli, L. A. 1979. Biogeochemical distribution of rare earths and other trace elements in plants and soils. In: Ahrens, L. H. (ed.), Origin and distribution of the elements. Pergamon Press, Oxford, 819–827.

    Google Scholar 

  • Lepel, E. A. & Laul, J. C. 1987. Trace rare earth element analysis of IAEA hair HH-1, animal bone H-5, and other biological standards by radiochemical neutron activation. J. Radioanal. Nucl. Chem. 113: 275–284.

    Google Scholar 

  • Li, Wanxuan, Xiao, Yueying & Yu, Ximao 1984. Direct spectrophotometric determination of the cerium group of rare earth elements in plants and seeds with tribromoarsenazo. Yingyong Huaxue 1: 59–61.

    Google Scholar 

  • Lieth, H. & Markert, B. 1988. Aufstellung und Auswertung ökosystemarer Element-Konzentrations-Kataster. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Lieth, H. & Markert, B. (eds.) 1990. Element Concentration Cadasters in Ecosystems, Methods of Assessment and Evaluation. VCH-Publisher, Weinheim, 448 pp.

    Google Scholar 

  • Liu, Zheng 1981. Rare earth elements in soils and plants. Turangxue Jinzhan 1: 17–21.

    Google Scholar 

  • Markert, B. 1987. The pattern of distribution of lanthanide elements in soils and plants. Phytochemistry 26: 3167–3170.

    Google Scholar 

  • Markert, B. 1991a. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin. I. Mosses and peat profiles as bioindicators for different chemical elements. Vegetatio (in press).

  • Markert, B. 1991b. Instrumentelle Multielementanalyse in Pflanzenproben. VCH-Publisher Inc., Weinheim and New York (in press).

    Google Scholar 

  • Markert, B., Piehler, H., Lieth, H. & Sugimae, A. 1989. Normalization and calculation of lanthanide element concentrations in environmental samples. Radiat. Environ. Biophysics 28: 213–221.

    Google Scholar 

  • Markert, B. & Wtorowa, W. 1991. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, USSR. III. Comparison of the multielement budget with a forest ecosystem in Germany (in prep.).

  • Markert, B. & ZhangDe, Li 1991. Natural background concentrations of rare earth elements in a forest ecosystem. The Science of the Total Environment 103: 27–35.

    Google Scholar 

  • McKenzie, H. A. & Smythe, L. E. (eds.) 1988. Quantitative trace analysis of biological materials. Elsevier, Amsterdam, New York, Oxford.

    Google Scholar 

  • Masuda, A., Nakamura, N. & Tanaka, T. 1973. Fine structure of mutually normalized rare earth patterns of chondrites. Geochim. Cosmochim. Acta 37: 239–248.

    Google Scholar 

  • Nance, W. B. & Taylor, S. R. 1976. Rare earth element patterns and crustal evolution. I. Australian post-Archean sedimentary rocks. Geochim. Cosmochim. Acta 40: 1539–1551.

    Google Scholar 

  • Nance, W. B. & Taylor, S. R. 1977. Rare earth element patterns and crustal evolution. II. Archean sedimentary rocks from Kalgoorli, Australia. Geochim. Cosmochim. Acta 41: 225–231.

    Google Scholar 

  • Nevoral, V. 1988. Auftreten von Spuren seltener Erden in Mineralwässern. Balneol. bohem. 17: 18–25.

    Google Scholar 

  • Nriagu, J. O. & Pacyna, J. M. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139.

    Google Scholar 

  • Ohno, S., Asprer, G. A., Hongo, S., Suzuki, M. & Watanabe, S. 1971. Determination of Europium in biological materials by neutron activation analysis. Radioisotopes 20: 224–227.

    Google Scholar 

  • Okada, Y. & Hirai, S. 1984. Trace elements in edible plants. Musashi Kogyo Daigaku Genshiryoku Kenkyusho Kenkyu Shoho 9: 142–146.

    Google Scholar 

  • Qi, Daquan & Cheng, Li 1985. Spectrochemical study on the distribution of rare earth contents in plants. Beijing Daxue Xuebao, Ziran Kexueban 6: 68–74.

    Google Scholar 

  • Qi, Daquan, Gong, Xiaowei & Zhao, Kunghua 1984. Spectrochemical determination of rare earth in plants including tea plants. Guangpuxue Yu Guangpu Fenxi 4: 36–40.

    Google Scholar 

  • Qi, Tianqing, Liu, Puling, Shong, Caichi & Wang, Xibin 1984. Absorption, transfer and distribution of rare earth elements in plants. Zhongguo Xitu Xuebao 2: 94–98.

    Google Scholar 

  • Sansoni, B. 1987. Multi-element analysis for environmental characterization. Pure & Applied Chemistry 59: 579–610.

    Google Scholar 

  • Sugimae, A. 1980. Atmospheric concentrations and sources of rare earth elements. Japan, Atmospheric Environment 14: 1171–1175.

    Google Scholar 

  • Sugimae, A. 1990. Sample preparation for multi-element analysis of environmental samples. In: Lieth, H. & Markert, B. (eds.). Element concentration cadasters in ecosystems. VCH-Verlagsgesellschaft mbH, Weinheim, New York, pp. 107–117.

    Google Scholar 

  • Taylor, S. R. & Gorton, M. P. 1977. Geochemical application of spark source mass spectrography. II. Element sensitivity, precision and accuracy. Geochim. Cosmochim. Acta 41: 1375–1380.

    Google Scholar 

  • Tjioe, P. S., Volkers, K. J., Kroon, J. J. & De, Goeij, J. J. M. 1983. Distribution patterns of rare earth elements in biological materials evaluated by radiochemical neutron activation analysis. J. Radioanal. Chem. 80: 129–139.

    Google Scholar 

  • Tsukada, M., Yoshikawa, H., Yanaga, M., Endo, K., Nakahara, H. 1988. Dysprosium-156 as an activable yield tracer for determination of rare earth elements in biological materials by neutron activation analysis. J. Radioanal. Nucl. Chem. 125: 351–366.

    Google Scholar 

  • Wu, Zhaoming, Tang, Xike, Gao, Xiaoxia, Jiao, Kui & Zhang, Manping 1983. Effect of rare earth elements on yield increase in agriculture. I. Preliminary studies on distribution and content of rare earth elements in plants. Zhongguo Xitu Xuebao 1: 70–75.

    Google Scholar 

  • Yliruokanen, I. 1975a. A chemical study on the occurrence of rare earths in plants. Ann. Acad. Sci. Fenn. Ser. A II Chem. 176: 1–28.

    Google Scholar 

  • Yliruokanen, I. 1975b. Uranium, thorium, lead and yttrium in some plants growing on granitic and radioactive rocks. Bull. Geol. Soc. Finl. 47: 71–78.

    Google Scholar 

  • Zeisler, R., Stone, S. F. & Sanders, R. W. 1988. Sequential determination of biological and pollutant elements in marine bivalves. Anal. Chem. 60: 2760–2765.

    Google Scholar 

  • ZhangDe, Li 1988. Inductively coupled plasma-spectrographic determination of trace rare earth in waters, soils and plants. Fenxi Shiyanshi 7 (3): 61–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markert, B., de Li, Z. Inorganic chemical investigations in the forest biosphere reserve near Kalinin, USSR. Vegetatio 97, 57–62 (1991). https://doi.org/10.1007/BF00033901

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033901

Keywords

Navigation