Skip to main content
Log in

The role of scaffold attachment regions in the structural and functional organization of plant chromatin

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Studies on nuclear scaffolds and scaffold attachment regions (SARs) have recently been extended to different plant species and indicate that SARs are involved in the structural and functional organization of the plant genome, as is the case for other eukaryotes. One type of SAR seems to delimit structural chromatin loops and may also border functional units of gene expression and DNA replication. Another group of SARs map close to regulatory elements and may be directly involved in gene expression. In this overview, we summarize the structural and functional properties of plant SARs in comparison with those of SARs from animals and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, Y., Käs, E. and Laemmli, U.K. (1989) Prefertial, cooperative binding of DNA topoisomerase II to scaffoldassociated regions.EMBO J. 8, 3997–4006.

    PubMed  Google Scholar 

  • Allen, G.C., Hall, G.E. Jr, Childs, L.C., Weissinger, A.K., Spiker, S. and Thompson, W.F. (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells.Plant Cell 5, 603–13.

    Article  PubMed  Google Scholar 

  • Amati, B.B. and Gasser, S.M. (1988) Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold.Cell 54, 967–78.

    Article  PubMed  Google Scholar 

  • Avramova, Z. and Bennetzen, J.L. (1993) Isolation of matrices from maize leaf nuclei: identification of a matrix-biding site adjacent to theAdhl gene.Plant Mol. Biol. 22, 1135–43.

    Article  PubMed  Google Scholar 

  • Berezney, R. (1991) The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus.J. Cell. Biochem. 47, 109–23.

    Article  PubMed  Google Scholar 

  • Berezney, R. and Coffey, D. (1974) Identification of a nuclear protein matrix.Biochem. Biophys. Res. Commun. 60, 1410–9.

    Article  PubMed  Google Scholar 

  • Berrios, M., Osheroff, N. and Fisher, P.A. (1985)In situ localization of DNA topoisomerase II, a major polypeptide component of theDrosophila nuclear matrix fraction.Proc. Natl Acad. Sci. USA 82, 4142–6.

    PubMed  Google Scholar 

  • Beven, A., Guan, Y., Peart, J., Cooper, C. and Shaw, P. (1991) Monoclonal antibodies to plant nuclear matrix reveal intermediate filament-related components within the nucleus.J. Cell Sci. 98, 293–302.

    Google Scholar 

  • Blasquez, V.C., Xu, M., Moses, S.C. and Garrard, W.T. (1989) Immunoglobin K gene expression after stable integration. I. Role of the intronicMAR and enhancer in plasmacytoma cells.J. Biol. Chem. 264, 21183–9.

    PubMed  Google Scholar 

  • Bode, J. and Maass, K. (1988) Chromatin domain surrounding the human interferon-β gene as defined by scaffold-attached regions.Biochemistry 27, 4706–11.

    Article  PubMed  Google Scholar 

  • Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. and Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs.Science 255, 195–7.

    PubMed  Google Scholar 

  • Bonifer, C., Hecht, A., Saueressig, H., Winter, D.M. and Sippel, A.E. (1991) Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci.J. Cell. Biochem. 47, 99–108.

    Article  PubMed  Google Scholar 

  • Breyne, P., Montagu, M. van, Depicker, A. and Gheysen, G. (1992) Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco.Plant Cell 4, 463–71.

    Article  PubMed  Google Scholar 

  • Carballo, M., Giné, R., Santos, M. and Puigdomènech, P. (1991) Characterization of topoisomerase I and II activities in nuclear extracts during callogenesis in immature embryos ofZea mays.Pl. Mol. Biol. 16, 59–70.

    Article  Google Scholar 

  • Carter, K.C. and Bentley Lawrence, J. (1991) DNA and RNA within the nucleus: how much sequence-specific spatial organization?J. Cell. Biochem. 47, 124–9.

    Article  PubMed  Google Scholar 

  • Carter, K.C., Bowman, D., Carrington, W., Fogarty, K., McNeil, J.A., Fay, F.S. and Bentley Lawrence, J. (1993) A threedimensional view of precursor messenger RNA metabolism within the mammalian nucleus.Science 259, 1330–5.

    PubMed  Google Scholar 

  • Clark, D.J. and Kimura, T. (1990) Electrostatic mechanism of chromatin folding.J. Mol. Biol. 211, 883–96.

    Article  PubMed  Google Scholar 

  • Cockerill, P.N. and Garrard, W.T. (1986) Chromosomal loop anchorage of the kappa immunoglobin gene occurs next to the enchancer in a region containing toposomerase II sites.Cell 44, 273–82.

    Article  PubMed  Google Scholar 

  • Cook, P.R. (1989) The nucleoskeleton and the topology of transcription.Eur. J. Biochem. 185, 487–501.

    Article  PubMed  Google Scholar 

  • Dubochet, J. (1993) Twisting in a crowd.Trends Cell Biol. 3, 1–3.

    Article  PubMed  Google Scholar 

  • Dworetzky, S.I., Fey, E.G., Penman, S., Lian, J.B., Stein, J.L. and Stein, G.S. (1992) Sequence-specific DNA-binding proteins are components of a nuclear matrixattachment site.Proc. Natl Acad. Sci. USA 89, 4178–82.

    PubMed  Google Scholar 

  • Fey, E.G. and Penman, S. (1988) Nuclear matrix proteins reflect cell type of origin in cultured human cells.Proc. Natl Acad. Sci. USA 85, 121–5.

    PubMed  Google Scholar 

  • Forrester, W.C., Thompson, C., Elder, J.T. and Groudine, M. (1986) A developmentally stable chromatin structure in the human β-globin gene cluster.Proc. Natl Acad. Sci. USA 83 1359–63.

    PubMed  Google Scholar 

  • Frederick, S.E., Mangan, M.E., Carey, J.B. and Gruber, P.J. (1992) Intermediate filament antigens of 60 and 65 kDa in the nuclear matrix of plants: their detection and localization.Exp. Cell Res. 199, 213–22.

    Article  PubMed  Google Scholar 

  • Gasser, S.M. and Laemmli, U.K. (1986a) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes ofD. melanogaster.Cell 46, 521–30.

    Article  PubMed  Google Scholar 

  • Gasser, S.M. and Laemmli, U.K. (1986b) The organization of chromatin loops: characterization of a scaffold attachment site.EMBO J. 5, 511–8.

    Google Scholar 

  • Gasser, S.M. and Laemmli, U.K. (1987) A glimpse at chromosomal order.Trends Genet. 3, 16–22.

    Article  Google Scholar 

  • Gasser, S.M., Amati, B.B., Cardenas, M.E. and Hofmann, J.F.X., (1989) Studies on scaffold attachment sites and their relation to genome function.Int. Rev. Cytol. 119, 57–96.

    PubMed  Google Scholar 

  • Georgiev, G.P., Vassetzky, Y.S. Jr, Luchnik, A.N., Chernokhvistov, V.V. and Razin, S.V. (1991) Nuclear skeleton, DNA domains and control of replication and transcription.Eur. J. Biochem. 200, 613–24.

    Article  PubMed  Google Scholar 

  • Hall, G. Jr., Allen, G.C., Loer, D.S., Thompson, W.F. and Spiker, S. (1991) Nuclear scaffolds and scaffold-attachment regions in higher plants.Proc. Natl Acad. Sci. USA,88, 9320–4.

    PubMed  Google Scholar 

  • Hiromi, Y., Kuroiwa, A. and Gehring, W. (1985) Control elements of theDrosophila segmentation genefushi tarazu.Cell 43, 603–13.

    Article  PubMed  Google Scholar 

  • Homberger, H.P. (1989) Bent DNA is a structural feature of scaffold attached regions inDrosophila melanogaster interphase nuclei.Chromosoma 98, 99–104.

    Article  PubMed  Google Scholar 

  • Hoffman, M. (1993) The cell's nucleus shapes up.Science 259, 1326–30.

    PubMed  Google Scholar 

  • Holde, K.E. van (1989)Chromatin. New York: Springer-Verlag.

    Google Scholar 

  • Ivanchenko, M. and Avramova, Z. (1992) Interaction of MAR-sequences with nuclear matrix proteins.J. Cell. Biochem. 50, 190–200.

    Article  PubMed  Google Scholar 

  • Izaurralde, E., Mirkovich, L. and Laemmli, U.K. (1988) Interaction of DNA with nuclear scaffoldsin vitro.J. Mol. Biol. 200, 111–25.

    Article  PubMed  Google Scholar 

  • Jack, R.S. and Eggert, H. (1992) The elusive nuclear matrix.Eur..J. Biochem. 209, 503–9.

    Google Scholar 

  • Jackson, D.A. (1990) The organization of replication centres in higher eukaryotes.BioEssays 12, 87–9.

    Article  PubMed  Google Scholar 

  • Jackson, D.A. (1991) Structure-function relationships in eukaryotic nuclei.BioEssays 13, 1–10.

    Article  PubMed  Google Scholar 

  • Jackson, D.A., Dickinson, P. and Cook, P.R. (1990) The size of chromatin loops in HeLa cells.EMBO J. 9, 567–71.

    PubMed  Google Scholar 

  • Jarman, A.P. and Higgs, D.R. (1988) Nuclear scaffold attachment sites in the human globin gene complexes.EMBO J. 7, 3337–44.

    PubMed  Google Scholar 

  • Käs, E. and Chasin, L.A. (1987) Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic region.J. Mol. Biol. 198, 677–92.

    Article  PubMed  Google Scholar 

  • Kellum, R. and Schedl, P. (1991) A position-effect assay for boundaries of higher order chromosomal domains.Cell 64, 941–50.

    Article  PubMed  Google Scholar 

  • Kirov, N., Djondjurov, L. and Tsanev, R. (1984) Nuclear matrix and transcriptional activity of the mouse α-globin gene.J. Mol. Biol. 180, 601–14.

    Article  PubMed  Google Scholar 

  • Klehr, D., Maass, K. and Bode, J. (1991) Scaffold-attached regions from the human interferon β domain can be used to enhance stable expression of genes under the control of various promoters.Biochemistry 30, 1264–70.

    Article  PubMed  Google Scholar 

  • Laemmli, U.K., Käs, E., Poljak, L. and Adachi, Y. (1992) Scaffold-associated regions:cis-acting determinants of chromatin structural loops and functional domains.Curr. Opin. Genet. Dev. 2, 275–85.

    Article  PubMed  Google Scholar 

  • Levy-Wilson, B. and Fortier, C. (1989) The limits of the DNase I-sensitive domain of the human apolipoprotein B gene coincide with the locations of chromosomal anchorage loops and define the 5′ and 3′ boundaries of the gene.J. Biol. Chem. 264, 21196–204.

    PubMed  Google Scholar 

  • McNabb, S.L., and Beckendorf, S.K. (1986)Cis-acting sequences which regulate expression of theSgs-4 glue protein gene ofDrosophila.EMBO J. 5, 2331–40.

    PubMed  Google Scholar 

  • Medina, M.A., Moreno Diaz de la Espina, S., Martin, M. and Fernandez-Gomez, M.E. (1989) Interchromatin granules in plant nuclei.Biol. Cell 67, 331–9.

    Article  Google Scholar 

  • Mielke, C., Kohwi, Y., Kohwi-Shigematsu, T. and Bode, J. (1990) Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of propertiesin vitro and functionin vivo.Biochemistry 29, 7475–85.

    Article  PubMed  Google Scholar 

  • Mirkovitch, J., Mirault, M.E. and Laemmli, U.K. (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold.Cell 39, 223–32.

    Article  PubMed  Google Scholar 

  • Moreno Diaz de la Espina, S., Barthellemy, I. and Cerezuela, MA. (1991) Isolation and ultrastructural characterization of the residual nuclear matrix in a plant cell system.Chromosoma 100, 110–7.

    Article  Google Scholar 

  • Nakayasu, H. and Berezney, R. (1991) Nuclear matrins: identification of the major nuclear matrix proteins.Proc. Natl Acad. Sci. USA 88, 10312–6.

    PubMed  Google Scholar 

  • Nigg, E.A. (1989) The nuclear envelope.Curr. Opin. Cell Biol. 1, 435–40.

    Article  PubMed  Google Scholar 

  • Paul, A.L. and Ferl, R.J. (1993) Osmium tetroxide footprinting of a scaffold attachment region in the maizeAdh 1 promoter.Plant Mol. Biol. 22, 1145–51.

    Article  PubMed  Google Scholar 

  • Phi-Van, L. and Strätling, W.H. (1988) The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain.EMBO J. 7, 655–64.

    PubMed  Google Scholar 

  • Phi-Van, L., Kries, J.P. von, Ostertag, W. and Strätling, W.H. (1990) The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes.Mol. Cell. Biol. 10, 2302–7.

    PubMed  Google Scholar 

  • Razin, S.V., Petrov, P. and Hancock, R. (1991) Precise lozalization of the α-globin gene cluster within one of the 20-to 300-kilobase DNA fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sitesin vivo: evidence that the fragments are DNA loops or domains.Proc. Natl Acad. Sci. USA 88 8815–9.

    Google Scholar 

  • Roberge, M. and Gasser, S.M. (1992) DNA loops: structural and functional properties of scaffold-attached regions.Mol. Microbiol. 6, 419–23.

    PubMed  Google Scholar 

  • Sander, M. and Hsieh, T.S. (1985)Drosophila toposiomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.Nucl. Acids Res. 13, 1057–72.

    PubMed  Google Scholar 

  • Saunders, W.S., Cooke, C.A. and Earnshaw, W.C. (1991). Compartmentalization within the nucleus: discovery of a novel subnuclear region.J. Cell Biol. 115, 919–31.

    Article  PubMed  Google Scholar 

  • Schöffl, F., Schröder, G., Kliem, M. and Rieping, M. (1993) An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants.Transgenic Res. 2, 93–100.

    PubMed  Google Scholar 

  • Slatter, R.E., Dupree, P. and Gray, J.C. (1991) A scaffold-associated DNA region is located downstream of the pea plastocyanin gene.Pl. Cell 3, 1239–50.

    Article  Google Scholar 

  • Sörensen, B.S., Fukata, H., Jensen, P.S., Andersen, A.H., Christiansen, K., Fukasawa, H. and Westergaard, O. (1991) Drug stimulated DNA cleavage mediated by cauliflower topoisomerase II.Pl. Physiol. 95, 659–62.

    Google Scholar 

  • Spector, D.L. (1990) Higher order nuclear organization: three-dimensional distribution of small nuclear ribonucleoprotein particles.Proc. Natl Acad. Sci. USA 87, 147–51.

    PubMed  Google Scholar 

  • Stief, A., Winter, D.M., Strätling, W.H. and Sippel, A.E. (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity.Nature 341 343–5.

    Article  PubMed  Google Scholar 

  • Stinchcomb, D.T., Struhl, K. and Davis, R.W. (1979) Isolation and characterisation of a yeast chromosomal replicator.Nature 282, 39–43.

    PubMed  Google Scholar 

  • Stuurman, N., Meijne, A.M.L., Pol, A.J. van der, Jong, L. de, Driel, R. van and Renswoude, J. van (1990) The nuclear matrix from cells of different origin. Evidence for a common set of matrix proteins.J. Biol. Chem. 265, 5460–5.

    PubMed  Google Scholar 

  • Surdej, P., Got, C., Rosset, R. and Miassod, R. (1990) Supragenic loop organization: mapping inDrosophila embryos, of scaffold-associated regions on a 800 kilobase DNA continuum cloned from the 14B–15B first chromosome region.Nucl. Acids Res. 18, 3713–22.

    PubMed  Google Scholar 

  • Wanner, G., Formanek, H., Martin, R. and Hermann, R.G. (1991) High resolution scanning electron microscopy of plant chromosomes.Chromosoma 100, 103–9.

    Article  Google Scholar 

  • Webb, C.F. Das, C., Eneff, K.L. and Tucker, P.W. (1991) Identification of a matrix-associated region 5′ of an immunoglobulin heavy chain variable region gene.Mol. Cell. Biol. 11, 5206–11.

    PubMed  Google Scholar 

  • Werner, D., Rest, R. and Neuer-Nitsche, B. (1988) Nuclear matrix. In Kahl, G. ed.,Architecture of Eukaryotic Genes, pp. 449–59. Weinheim, Germany: VCH Verlagsgesellschaft.

    Google Scholar 

  • Xing, Y., Johnson, C.V., Dobner, P.R. and Bentley Lawrence, J. (1993) Higher level organization of individual gene transcription and RNA splicing.Science 259, 1326–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breyne, P., van Montagu, M. & Gheysen, G. The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Research 3, 195–202 (1994). https://doi.org/10.1007/BF01973987

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01973987

Keywords

Navigation