Skip to main content
Log in

A numerical study of the pre-ejection, magnetically-sheared corona as a free boundary problem

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A class of magnetostatic equilibria with axial symmetry outside a unit sphere in the presence of plasma pressure and an r −2 gravitational field is constructed. The structure contains a localized current-carrying region confined by a background bipolar potential field, and the shape of the region changes subject to the variation of the electric current. The continuity requirement for the magnetic field and plasma pressures at the outer boundary of the cavity defines a free boundary problem, which is solved numerically using a spectral boundary scheme. The model is then used to study the expansion of the current-carrying region, caused by the buildup of magnetic shear, against the background confining field. The magnetic shear in our model is induced by the loading of an azimuthal field, accompanied by a depletion of plasma density.

We show that due to the additional effect of confinement by the dense surrounding plasma, the energy of the magnetic field can exceed the energy of its associated open field, presumably a necessary condition for the onset of coronal mass ejections. (However, the plasma beta of the confining fluid is higher than that in the outer boundary of a realistic helmet-streamer structure.) Furthermore, under the assumption that coronal mass ejections are driven by magnetic buoyancy, the result from our model study lends further support to the notion of a suspended magnetic flux rope in the low-density cavity of a helmet-streamer as a promising pre-ejection configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A.: 1967, Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  • Aly, J. J.: 1984, Astrophys. J. 283, 349.

    Google Scholar 

  • Aly, J. J.: 1991, Astrophys. J. 325, L61.

    Google Scholar 

  • Barnes, C. W. and Sturrock, P. A.: 1972, Astrophys. J. 174, 659.

    Google Scholar 

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Instability, Clarendon Press, London.

    Google Scholar 

  • Chou, Y. P. and Low, B. C.: 1994, Solar Phys., in press.

  • Crank, J.: 1984, Free and Moving Boundary Problem, Clarendon Press, New York.

    Google Scholar 

  • Courant, R. and Hilbert, D.: 1962, Methods of Mathematical Physics, Interscience, New York.

    Google Scholar 

  • Gosling, J. T., Hilder, E., MacQueen, R. M., Munro, R. H., Poland, A. I., and Ross, C. L.: 1974, J. Geophys. Res. 79, 4581.

    Google Scholar 

  • Greenberg, M. D.: 1978, Foundations of Applied Mathematics, Prentice-Hall, New Jersey.

    Google Scholar 

  • Harrison, R. A.: 1986, Astron. Astrophys. 162, 283.

    Google Scholar 

  • Hundhausen, A. J.: 1988, Proceedings of the 6th International Solar Wind Conference, p. 131.

  • Hundhausen, A. J.: 1993, Coronal Mass Ejections: A Summary of SMM Observations, from 1980 and 1984–1989, HAO/NCAR, Boulder.

    Google Scholar 

  • Illing, R. M. E. and Hundhausen, A. J.: 1986, J. Geophys. Res. 91, 10951.

    Google Scholar 

  • Jackson, J. D.: 1975, Classical Electrodynamics, Wiley, New York.

    Google Scholar 

  • Klimchuk, J. A. and Sturrock, P. A.: 1992, Astrophys. J. 385, 344.

    Google Scholar 

  • Leroy, J. L.: 1977, Astron. Astrophys. 60, 79.

    Google Scholar 

  • Leroy, J. L., Bommier, V., and Sahal-Bréchot, S.: 1983, Solar Phys. 83, 135.

    Google Scholar 

  • Low, B. C.: 1981, Astrophys. J. 251, 352.

    Google Scholar 

  • Low, B. C.: 1993a, Astropys. J. 409, 789.

    Google Scholar 

  • Low, B. C.: 1993b, Phys. Fluids B, in press.

  • Low, B. C. and Smith, D. F.: 1993, Astrophys. J. 410, 412.

    Google Scholar 

  • Low, B. C., Munro, R. H., and Fisher, R. R.: 1982, Astrophys. J. 254, 335.

    Google Scholar 

  • Mikić, Z. and Linker, J. A.: 1994, Astrophys. J. 430, 898.

    Google Scholar 

  • Munro, R. H., Gosling, J. T., Hilder, E., MacQueen, R. M., Poland, A. I., and Ross, C. L.: 1979, Solar Phys. 61, 201.

    Google Scholar 

  • Mouschovias, T. Ch. and Poland, A. I.: 1978, Astrophys. J. 220, 675.

    Google Scholar 

  • Norbury, J.: 1973, J. Fluid Mech. 57, part 3, 417.

    Google Scholar 

  • Parker, E. N.: 1955, Astrophys. J. 121, 491.

    Google Scholar 

  • Porter, L. J., Klimchuk, J. A., and Sturrock, P. A.: 1992, Astrophys. J. 385, 738.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1986, Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Roumeliotis, G., Sturrock, P., and Antiochos, S. K.: 1994, Astrophys. J. 423, 847.

    Google Scholar 

  • Rust D. M.: 1967, Astrophys. J. 150, 313.

    Google Scholar 

  • Sturrock P. A.: 1991, Astrophys. J. 380, 655.

    Google Scholar 

  • Wolfson, R., Conover, C., and Illing, R. M. E.: 1987, J. Geophys. Res. 92, 13641.

    Google Scholar 

  • Wolfson, R. and Low, B. C: 1992, Astrophys. J. 391, 353.

    Google Scholar 

  • Yang, W. H., Sturrock, P. A., and Antiochos, S. K.: 1986, Astrophys. J. 309, 383.

    Google Scholar 

  • Yeh, T: 1982, Solar Phys. 78, 287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, YP., Charbonneau, P. A numerical study of the pre-ejection, magnetically-sheared corona as a free boundary problem. Sol Phys 166, 333–369 (1996). https://doi.org/10.1007/BF00149403

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00149403

Keywords

Navigation