Skip to main content
Log in

Structure and evolution of the 4.5–5S rRNA intergenic region in rDNA from rapeseed (Brassica napus) chloroplasts

  • Plant Molecular Biology Update Section
  • Plant Molecular Biology Update
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adheya S, Gottesman M: Control of transcription termination. Ann Rev Biochem 47: 967–996 (1978).

    Google Scholar 

  2. Audren H, Bisanz-Seyer C, Briat J-F, Mache R: Structure and transcription of the 5S rRNA gene from spinach chloroplasts. Curr Genet 12: 263–269 (1987).

    Google Scholar 

  3. Audren H, Mache R: Nucleotide sequence of the spinach chloroplast 4.5S ribosomal RNA gene and of its 5′ flanking region including the 3′ end of the 23S rRNA gene. Nucleic Acids Res 14: 9533 (1986).

    Google Scholar 

  4. Blattner FR, Williams BG, Blechl AE, Denniston-Thompson K, Faber HE, Furlong LA, Gunwald DJ, Kiefer DO, Moore DD, Schumm JW, Sheldon EL, Smithies O: Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science 196: 161–169 (1977).

    Google Scholar 

  5. Bowman CM, Dyer TA: 4.5S Ribonucleic acid, a novel ribosome component in the chloroplasts of flowering plants. Biochem J 183: 605–613 (1979).

    Google Scholar 

  6. Cech TR, Bass BL: Biological catalysis by RNA. Ann Rev Biochem 55: 599–629 (1986).

    Google Scholar 

  7. Danko SM, Evans EH, Whittaker PA: Photosynthetic Systems: Structure, Function, Assembly. John Wiley and Sons, Chichester (1983).

    Google Scholar 

  8. Edwards K, Bedbrook J, Dyer TA, Kossel K: 4.5S rRNA fromZea mays chloroplasts shows structure homology with the 3′ end of prokaryotic 23S rRNA. Biochem Int 2: 533–538 (1981).

    Google Scholar 

  9. Ellis RJ: Chloroplast Biogenesis. Cambridge University Press, Cambridge (1984).

    Google Scholar 

  10. Hartley M: The synthesis and origin of chloroplast lowmolecular weight ribosomal ribonucleic acid in spinach. Eur J Biochem 96: 311–320 (1979).

    Google Scholar 

  11. Hui I, Dennis PP: Characterization of the ribosomal RNA gene clusters inItalobacterium cutirubrum. J Biol Chem 260: 899–906 (1985).

    Google Scholar 

  12. Machatt MA, Ebel J, Branlant C: The 3′ terminal region of bacterial 23S ribosomal RNA. Structure and homology with the 3′-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5S rRNA. Nucl Acids Res 9: 1533–1549 (1981).

    Google Scholar 

  13. Maniatis T, Fritsch EF, Sambrook J: Molecular Clonning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  14. Maxam AM, Gilbert W: Sequencing of end-labeled DNA with base-specific chemical cleavages. Meth Enzymol 65: 499–560 (1980).

    Google Scholar 

  15. McKay RM: The origin of plant chloroplast 4.5S ribosomal RNA. FEBS Lett 123: 17–18 (1981).

    Google Scholar 

  16. Meyback B, Pace B, Uhlenbeck O, Pace N: Use of T4 RNA ligase to construct model substrates for a ribosomal RNA maturation endonuclease. Proc Natl Acad Sci USA 75: 3045–3049 (1978).

    Google Scholar 

  17. Nazar RN, McDougall J, Van Ryk DI: Structure and evolution of the 4.5S–5S ribosomal RNA intergenic region fromGlycine max (soya bean). Nucleic Acids Res 15: 7593–7603 (1987).

    Google Scholar 

  18. Nishikawa K, Takemura S: Nucleotide sequence of 5S RNA fromTorulopsis utilis. FEBS Lett 40: 106–109 (1974).

    Google Scholar 

  19. Sanger F, Nicklen A, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5468 (1977).

    Google Scholar 

  20. Saxena PK, Flowke LC, King J: An efficient procedure for isolation of nucleic from plant protoplasts. Protoplasma 128: 184–189 (1985).

    Google Scholar 

  21. Strittmatter G, Kossel H: Cotranscription and processing of 23S, 4.5S and 5S rRNA in chloroplasts fromZea mays. Nucleic Acids Res 12: 7633–7647 (1984).

    Google Scholar 

  22. Takaiwa F, Suguira M: Nucleotide sequences of the 4.5S and 5S ribosomal RNA genes from tobacco chloroplasts. Mol Gen Genet 180: 1–4 (1980).

    Google Scholar 

  23. Tinoco IJr, Boren PN, Denglei B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J: Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246: 40–41 (19??).

  24. Wawrousek EF, Hansen JN: Structure and organization of a cluster of six tRNA genes in the space between tandem ribosomal RNA gene sets inBacillus subtilis. J Biol Chem 258: 291–298 (1983).

    Google Scholar 

  25. Whitfeld PR, Leaver CJ, Bottomley W, Atchison BA: Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes. Biochem J 175: 1103–1112 (1978).

    Google Scholar 

  26. Wildeman AG, Nazar RN: Nucleotide sequence of wheat chloroplastid 4.5S ribonucleic acid. J Biol Chem 255: 11896–11900 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Nazar, R.N. Structure and evolution of the 4.5–5S rRNA intergenic region in rDNA from rapeseed (Brassica napus) chloroplasts. Plant Mol Biol 14, 1041–1044 (1990). https://doi.org/10.1007/BF00019400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019400

Key words

Navigation