Skip to main content
Log in

On Thermodynamically Consistent Schemes for Phase Field Equations

  • Published:
Open Systems & Information Dynamics

Abstract

This paper addresses the issue of thermodynamically consistent derivations of field equations governing nonisothermal processes with diffuse interfaces and their implications for interface conditions in the associated sharp interface theories. We operate within the framework of extended irreversible thermodynamics, allowing gradient terms to be present not only in the free energy and entropy densities but also in the internal energy, for both nonconserved and conserved order parameter theories. These various gradient terms are shown to relate to the splitting of the surface tension into an energetic and an entropic part.

It is shown that the principle of nondecreasing local entropy production does not single out uniquely the form of the governing field equations. Instead it leads naturally to a one-parameter family of alternative theories which do not contradict the Curie principle of irreversible thermodynamics.

The principal applications are to the solidification of a pure material and of a binary alloy. In the case of a pure substance an asymptotic analysis is developed in the vicinity of the solidification front. The main effect of the alternative theories, as well as of the splitting of the surface tension, on the corresponding free boundary problem is manifested in the first order terms in the nonequilibrium contributions to the interface undercooling. We also consider the possibility of assigning from empirical data some specific values to the phenomenological parameters involved in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. B. Caroli, C. Caroli, and B. Roulet, in Solids Far from Equilibrium, C. Godreche, ed., Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  2. C. Charach and A. Zemel, Open Sys. Information Dyn. 1, 423 (1992).

    Google Scholar 

  3. M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford, 1993.

    Google Scholar 

  4. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982.

  5. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Google Scholar 

  6. S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).

    Google Scholar 

  7. J. W. Cahn, Acta Metallurgica 8, 554 (1960).

    Google Scholar 

  8. B. I. Halperin, P. C. Hohenberg, and S-K. Ma, Phys. Rev. B 10, 139 (1974).

    Google Scholar 

  9. J. S. Langer, in Chance and Matter, Les-Houches XLVI 1986, Elsevier Science Pubs., 1987.

  10. G. Caginalp, Arch. Rat. Mech. Anal 92, 205 (1986).

    Google Scholar 

  11. J. B. Collins and H. Levine, Phys. Rev. B 31, 6119 (1985).

    Google Scholar 

  12. G. Caginalp and P. C. Fife, Phys. Rev. B 33, 7792 (1986).

    Google Scholar 

  13. O. Penrose and P. C. Fife, Physica D 43, 44 (1990).

    Google Scholar 

  14. H. W. Alt and I. Pawlow, Physica D 59, 389 (1992).

    Google Scholar 

  15. H. W. Alt and I. Pawlow, Models of non-isothermal phase transitions in multicomponent systems. Part I: Theory, Preprint No. 222, SFB Bonn Univ.

  16. H. W. Alt and I. Pawlow, in Trends in Applications of Mathematics to Mechanics, M.D.P. Monteiro Marques and J. F. Rodrigues, eds, Pitman Mans. 77, 1995.

  17. H. W. Alt and I. Pawlow, Advances in Math. Sciences and Appl. 6, 291 (1996).

    Google Scholar 

  18. P. C. Fife and O. Penrose, Electronic J. Diff. Equations 1995, 1 (1995).

    Google Scholar 

  19. F. Spaepen, Solid State Physics 47, 1 (1994).

    Google Scholar 

  20. D. Oxtoby and A. D. J. Haymet, J. Chem. Phys. 76, 6262 (1982).

    Google Scholar 

  21. P. Harrowell and D. Oxtoby, J. Chem. Phys. 80, 1629 (1984).

    Google Scholar 

  22. W. J. Boettinger and J. H. Perepezko, in Rapidly Solidified Alloys, H. H. Liebermann, ed., p. 17, Marcel Dekker, 1993.

  23. A. P. Umantsev and A. L. Roitburd, Sov. Phys. Solid State 30, 651 (1988).

    Google Scholar 

  24. S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun, and G. B. McFadden, Physica D 69, 189 (1993).

    Google Scholar 

  25. A. P. Umantsev, J. Chem. Phys. 96, 605 (1992).

    Google Scholar 

  26. A. A. Wheeler, G. B. McFadden and W. J. Boettinger, Proc. Roy. Soc. London 452, 495 (1996).

    Google Scholar 

  27. D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  28. P. Casal and H. Gouin, Annales de Physique 13, Colloque No. 2, Supplement au No. 3, Thermodynamique des interfaces fluide-fluide, 3 (1988) (and references therein).

  29. F. Falk, J. Non-Equil. Thermodynamics 17, 53 (1992).

    Google Scholar 

  30. E. Fried and M. E. Gurtin, Physica D 68, 326 (1993).

    Google Scholar 

  31. E. Fried and G. Grach, An order-parameter based theory as a regularization of a sharp-interface theory for solid-solid phase transitions, TAM Report 818, Univ. of Illinois, 1996.

  32. A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Rev. E 47, 1893 (1993).

    Google Scholar 

  33. P. Fife and C. Charach, Solidification fronts and solute trapping in a binary alloy, accepted in SIAM J. Appl. Math.

  34. G. Caginalp and P. C. Fife, SIAM J. Appl. Math. 48, 506 (1988).

    Google Scholar 

  35. P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Reg. Conf. Series in Appl. Math. 53, Soc. Ind. Appl. Math (SIAM), Philadelphia, 1988.

  36. P. Bates, P. Fife, R. Gardner, and C. Jones, Physica D 104, 1 (1997).

    Google Scholar 

  37. J. Cahn, P. Fife, and O. Penrose, Acta Materialia 45, 4397 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charach, C., Fife, P.C. On Thermodynamically Consistent Schemes for Phase Field Equations. Open Systems & Information Dynamics 5, 99–123 (1998). https://doi.org/10.1023/A:1009652531731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009652531731

Keywords

Navigation