Skip to main content
Log in

Validation of flexible beam elements in dynamics programs

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A spatial beam element for static and dynamic problems which involve large displacements and rotations is described. This beam element is applied to static linear buckling problems, the simulation of the motion of a slider-crank mechanism with a flexible connecting rod and a planar and spatial spin-up motion of a flexible beam. Results are compared with those from the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kane, T. R., Ryan, R. R., and Banerjee, A. K., ‘Dynamics of a cantilever beam attached to a moving base’,AIAA Journal of Guidance, Control, and Dynamics 10, 1987, 139–151.

    Google Scholar 

  2. Visser, W. and Besseling, J. F., ‘Large displacement analysis of beams’, Report WTHD-10, Laboratory for Engineering Mechanics, Delft University of Technology, Delft, 1969.

    Google Scholar 

  3. Besseling, J. F., ‘Non-linear analysis of structures by the finite element method as a supplement to a linear analysis’,Computer Methods in Applied Mechanics and Engineering 3, 1974, 173–194.

    Article  Google Scholar 

  4. Besseling, J. F., ‘Post-buckling and non-linear analysis by the finite element method as a supplement to a linear analysis’,Zeitschrift für angewandte Mathematik und Mechanik 55, 1975, T3-T15.

    Google Scholar 

  5. Besseling, J. F., ‘Derivatives of deformation parameters for bar elements and their use in buckling and postbuckling analysis’,Computer Methods in Applied Mechanics and Engineering 12, 1977, 97–124.

    Article  Google Scholar 

  6. Besseling, J. F., ‘Non-linear theory for elastic beams and rods and its finite element representation’,Computer Methods in Applied Mechanics and Engineering 31, 1982, 205–220.

    Article  Google Scholar 

  7. Van der Werff, K. and Jonker, J. B., ‘Dynamics of flexible mechanisms’, inComputer Aided Analysis and Optimization of Mechanical System Dynamics, E. J. Haug (ed.), Springer-Verlag, Berlin, 1984, pp. 381–400.

    Google Scholar 

  8. Jonker, J. B., ‘A finite element dynamic analysis of spatial mechanisms with flexible links’,Computer Methods in Applied Mechanics and Engineering 76, 1989, 17–40.

    Article  Google Scholar 

  9. Meijaard, J. P., ‘Direct determination of periodic solutions of the dynamical equations of flexible mechanisms and manipulators’,International Journal for Numerical Methods in Engineering 32, 1991, 1691–1710.

    Google Scholar 

  10. Cowper, G. R., ‘The shear coefficient in Timoshenko's beam theory’,ASME Journal of Applied Mechanics 33, 1966, 335–340.

    Google Scholar 

  11. Argyris, J. H., ‘Continua and discontinua, an apercu of recent developments of the matrix displacement methods’, inMatrix Methods in Structural Mechanics, J. S. Przemieniecki, R. M. Bader, W. F. Bozich, J. R. Johnson, and W. J. Mykytow (eds.), Wright-Patterson Air Force Base, Dayton, Ohio, 1966, pp. 11–189.

    Google Scholar 

  12. Przemieniecki, J. S.,Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968.

    Google Scholar 

  13. Ziegler, H.,Principles of Structural Stability, Blaisdell, Waltham, Massachusetts, 1968.

    Google Scholar 

  14. Argyris, J. H., Dunne, P. C., Malejannakis, G., and Scharpf, D. W., ‘On large displacement-small strain analysis of structures with rotational degrees of freedom’,Computer Methods in Applied Mechanics and Engineering 14, 1978, 401–451;15, 1978, 99–135.

    Article  Google Scholar 

  15. Barsoum, R. S. and Gallagher, R. H., ‘Finite element analysis of torsional and torsional-flexural stability problems’,International Journal for Numerical Methods in Engineering 2, 1970, 335–352.

    Google Scholar 

  16. Chu, S.-C. and Pan, K. C., ‘Dynamic response of a high-speed slider-crank mechanism with an elastic connecting rod’,ASME Journal of Engineering for Industry B97, 1975, 542–550.

    Google Scholar 

  17. Song, J. O. and Haug, E. J., ‘Dynamic analysis of planar flexible mechanisms’,Computer Methods in Applied Mechanics and Engineering 24, 1980, 359–381.

    Article  Google Scholar 

  18. Shabana, A. and Wehage, R. A., ‘Variable degree-of-freedom component mode analysis of inertia variant flexible mechanical systems’,ASME Journal of Mechanisms, Transmissions, and Automation in Design 105, 1983, 371–378.

    Google Scholar 

  19. Koppens, W. P., Sauren, A. A. H. J., Veldpaus, F. E., and Van Campen, D. H., ‘The dynamics of a deformable body experiencing large displacements’,ASME Journal of Applied Mechanics 55, 1988, 676–680.

    Google Scholar 

  20. Hsiao, K.-M. and Jang, J.-Y., ‘Dynamic analysis of planar flexible mechanisms by co-rotational formulation’,Computer Methods in Applied Mechanics and Engineering 87, 1991, 1–14.

    Article  Google Scholar 

  21. Agrawal, O. P. and Shabana, A. A., ‘Dynamic analysis of multibody systems using component modes’,Computers & Structures 21, 1985, 1303–1312.

    Google Scholar 

  22. Agrawal, O. P. and Shabana, A. A., ‘Application of deformable-body mean axis to flexible multibody system dynamics’,Computer Methods in Applied Mechanics and Engineering 56, 1986, 217–245.

    Article  Google Scholar 

  23. Bartolone, D. F. and Shabana, A. A., ‘Effect of beam initial curvature on the dynamics of deformable multibody systems’,Mechanism and Machine Theory 24, 1989, 411–429.

    Article  Google Scholar 

  24. Bakr, E. M. and Shabana, A. A., ‘Geometrically nonlinear analysis of multibody systems’,Computers & Structures 23, 1986, 739–751.

    Google Scholar 

  25. Kim, S.-S. and Haug, E. J., ‘A recursive formulation for flexible multibody dynamics, Part I: Open-loop systems’,Computer Methods in Applied Mechanics and Engineering 71, 1988, 293–314.

    Article  Google Scholar 

  26. Wu, S.-C. and Haug, E. J., ‘Geometric non-linear substructuring for dynamics of flexible mechanical systems’,International Journal for Numerical Methods in Engineering 26, 1988, 2211–2226.

    Google Scholar 

  27. Boutaghou, Z. E., Erdman, A. G., and Stolarski, H. K., ‘Dynamics of flexible beams and plates in large overall motions’,ASME Journal of Applied Mechanics 59, 1992, 991–999.

    Google Scholar 

  28. Simo, J. C. and Vu-Quoc, L., ‘On the dynamics in space of rods undergoing large motions — A geometrically exact approach’,Computer Methods in Applied Mechanics and Engineering 66, 1988, 125–161.

    Article  Google Scholar 

  29. Ider, S. K. and Amirouche, F. M. L., ‘Nonlinear modeling of flexible multibody systems dynamics subjected to variable constraints’,ASME Journal of Applied Mechanics 56, 1989, 444–450.

    Google Scholar 

  30. Downer, J. D., Park, K. C., and Chiou, J. C., ‘Dynamics of flexible beams for multibody systems: A computational procedure’,Computer Methods in Applied Mechanics and Engineering 96, 1992, 373–408.

    Article  Google Scholar 

  31. Crisfield, M. A., ‘A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements’,Computer Methods in Applied Mechanics and Engineering 81, 1990, 131–150.

    Article  Google Scholar 

  32. Simo, J. C. and Vu-Quoc, L, ‘A three-dimensional finite-strain rod model. Part II: Computational aspects’,Computer Methods in Applied Mechanics and Engineering 58, 1986, 79–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijaard, J.P. Validation of flexible beam elements in dynamics programs. Nonlinear Dyn 9, 21–36 (1996). https://doi.org/10.1007/BF01833291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01833291

Key words

Navigation