Skip to main content
Log in

A nonlinear composite beam theory

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Presented here is a general theory for the three-dimensional nonlinear dynamics of elastic anisotropic initially straight beams undergoing moderate displacements and rotations. The theory fully accounts for geometric nonlinearities (large rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvature and strain-displacement expressions that contain the von Karman strains as a special case. Extensionality is included in the formulation, and transverse shear deformations are accounted for by using a third-order theory. Six third-order nonlinear partial-differential equations are derived for describing one extension, two bending, one torsion, and two shearing vibrations of composite beams. They show that laminated beams display linear elastic and nonlinear geometric couplings among all motions. The theory contains, as special cases, the Euler-Bernoulli theory, Timoshenko's beam theory, the third-order shear theory, and the von Karman type nonlinear theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chree, C., ‘The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solution and application’, Transactions of the Cambridge Philosophical Society 14, 1989, 250.

    Google Scholar 

  2. Cowper, G. R., ‘On the accuracy of Timoshenko's beam theory’, Journal of the Engineering Mechanics Division 94, 1968, 1447–1453.

    Google Scholar 

  3. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd. Edn., McGraw-Hill, New York, 1970.

    Google Scholar 

  4. Shames, I. H. and Dym, C. L., Energy and Finite Element Methods in Structural Mechanics, McGraw-Hill, New York, 1985, pp. 197–204.

    Google Scholar 

  5. Timoshenko, S. P., ‘On the correction for shear of the differential equation for transverse vibrations of prismatic bars’, Philosophical Magazine 41, 1921, 744–746.

    Google Scholar 

  6. Timoshenko, S. P., ‘On the transverse vibrations of bars of uniform cross sections’, Philosophical Magazine Series 6, 43, 1922, 125–131.

    Google Scholar 

  7. Cowper, G. R., ‘The shear coefficient in Timoshenko's beam theory’, Journal of Applied Mechanics 33, 1966, 335–340.

    Google Scholar 

  8. Heyliger, P. R. and Reddy, J. N., ‘A higher order beam finite element for bending and vibration problems’, Journal of Sound and Vibration 126, 1988, 309–326.

    Google Scholar 

  9. Bauchau, O. A. and Hong, C. H., ‘Large displacement analysis of naturally curved and twisted composite beams’, AIAA Journal 25, 1987, 1469–1475.

    Google Scholar 

  10. Bauchau, O. A. and Hong, C. H., ‘Nonlinear composite beam theory’, Journal of Applied Mechanics 55, 1988, 156–163.

    Google Scholar 

  11. Stemple, A. D. and Lee, S. W., ‘Finite-element model for composite beams with arbitrary cross-sectional warping’, AIAA Journal 26, 1988, 1512–1520.

    Google Scholar 

  12. Kane, T. R., Ryan, R. R., and Banerjee, A. K., ‘Dynamics of a cantilever beam attached to a moving base’, Journal of Guidance, Control, and Dynamics 10, 1987, 139–151.

    Google Scholar 

  13. Krishna Murty, A. V., ‘Vibrations of short beams’, AIAA Journal 8, 1970, 34–38.

    Google Scholar 

  14. Sheinman, I. and Adan, M., ‘The effect of shear deformation on post-buckling behavior of laminated beams’, Journal of Applied Mechanics 54, 1987, 558–562.

    Google Scholar 

  15. Friedmann, P. P., ‘Recent developments in rotary-wing aeroelasticity’, Journal of Aircraft 14, 1977, 1027–1041.

    Google Scholar 

  16. Bolotin, V. V., The Dynamic Stability of Elastic Systems, translated by V. I. Weingarten et al., Holden-Day, Inc., San Francisco, 1964.

    Google Scholar 

  17. Moody, M. L., ‘The parametric response of imperfect columns’, Developments in Mechanics, Proceedings of the Tenth Midwestern Mechanics Conference, 4, 1967, 329–346.

    Google Scholar 

  18. Ho, C.-H., Scott, R. A., and Eisley, J. G., ‘Nonplanar, nonlinear oscillations of a beam-I. Foreed motions’, International Journal of Non-Linear Mechanics 10, 1975, 113–127.

    Google Scholar 

  19. Evan-Iwanowski, R. M., Sanford, W. F., and Kehagioglou, T., ‘Nonstationary parametric response of a nonlinear column’, Developments in Theoretical and Applied Mechanics 5, 1970, 715–743.

    Google Scholar 

  20. Busby, H. R.Jr. and Weingarten, V. I.: ‘Nonlinear response of a beam to periodic loading’, International Journal of Non-Linear Mechanics 7, 1972, 289–303.

    Google Scholar 

  21. Hodges, D. H. and Dowell, E. H., ‘Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades’, NASA TN D-7818, 1974.

  22. Hodges, D. H. and Peters, D. A., ‘On the lateral buckling of uniform slender cantilever beams’, International Journal of Solids and Structures 11, 1975, 1269–1280.

    Google Scholar 

  23. Dowell, E. H., Traybar, J., and Hodges, D. H., ‘An experimental-theoretical correlation study of nonlinear bending and torsion deformations of a cantilever beam’, Journal of Sound and Vibration 50, 1977, 533–544.

    Google Scholar 

  24. Crespo de Silva, M. R. M. and Glynn, C. C., ‘Nonlinear flexural-flexural-torsional dynanics of inextensional beams—I. Equations of motion’, Journal of Structural Mechanics 6, 1978, 437–448.

    Google Scholar 

  25. Alkire, K., ‘An analysis of rotor blade twist variables associated with different Euler sequences and pretwist treatments’, NASA TM 84394, 1984.

  26. Maganty, S. P. and Bickford, W. B., ‘Large amplitude oscillations of thin circular rings’, Journal of Applied Mechanics 54, 1987, 315–322.

    Google Scholar 

  27. Rosen, A., Loewy, R. G. and Mathew, M. B., ‘Nonlinear analysis of pretwisted rods using principal curvature transformation. Part I: Theoretical derivation’, AIAA Journal 25, 1987, 470–478.

    Google Scholar 

  28. Rosen, A., Loewy, R. G., and Mathew, M. B., ‘Nonlinear analysis of pretwisted rods using principal curvature transformation, Part II: Numerical results’, AIAA Journal 25, 1987, 598–604.

    Google Scholar 

  29. Hodges, D. H., Crespo da Silva, M. R. M., and Peters, D. A., ‘Nonlinear effects in the static and dynamic behavior of beams and rotor blades’, Vertica 12, 1988 243–256.

    Google Scholar 

  30. Minguet, P. and Dugundji, J., ‘Experiments and analysis for composite blades under large deflections, Part 1 — Static behavior’, AIAA Journal 28, 1990, 1573–1579.

    Google Scholar 

  31. Pai, P. F. and Nayfeh, A. H., ‘Three-dimensional nonlinear vibrations of composite beams—I. Equations of motion’, Nonlinear Dynamics 1, 1990, 477–502.

    Google Scholar 

  32. Abarcar, R. B. and Cunniff, P. F., ‘The vibration of cantilever beams of fiber reinforced material’, Journal of Composite Materials 6, 1972, 504–517.

    Google Scholar 

  33. Kapania, R. K. and Raciti, S., ‘Nonlinear vibrations of unsymmetrically laminated beams’, AIAA Journal 27, 1989, 201–210.

    Google Scholar 

  34. Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Company, Inc., Pennsylvania, 1987.

    Google Scholar 

  35. Krenk, S., ‘A linear theory for pretwisted elastic beams’, Journal of Applied Mechanics 50, 1983, 137–142.

    Google Scholar 

  36. Adams, R. D. and Bacon, D. G. C., ‘Measurement of the flexural damping capacity and dynamic Young's modulus of metals and reinforced plastics’, Journal of Physics D: Applied Physics 6, 1973, 27–41.

    Google Scholar 

  37. Rao, G. V., Raju, I. S., and Raju, K. K., ‘Nonlinear vibrations of beams considering shear deformation and rotary inertia’, AIAA Journal, Technical Notes, May 1976, 685–687.

  38. Sathyamoorthy, M., ‘Nonlinear analysis of beams Part I: A survey of recent advances’, The Shock and Vibration Digest 14, 1982, 19–35.

    Google Scholar 

  39. Sathyamoorthy, M., ‘Nonlinear analysis of beams Part II: Finite element methods’, The Shock and Vibration Digest 14, 1982, 7–18.

    Google Scholar 

  40. Kapania, R. K. and Raciti, S., ‘Recent advances in analysis of laminated beams and plates, Part I: Shear effects and buckling’, AIAA Journal 27, 1989, 923–934.

    Google Scholar 

  41. Kapania, R. K. and Raciti, S. ‘Recent advances in analysis of laminated beams and plates, Part II: Vibrations and wave propagation’, AIAA Journal 27, 1989, 935–946.

    Google Scholar 

  42. Smith, C. E. Applied Mechanics — More Dynamics, John Wiley and Sons, New York, 1976.

    Google Scholar 

  43. MACSYMA, Symbolics, Inc., East Burlington, MA, November 1988.

  44. Vlasov, V. Z., Thin-Walled Elastic Beams. Translated from Russian, National Technical Information Service, U.S. Department of Commerce, 1951.

  45. Giavotto, V., Borri, M., Mantegazza, P., and Ghiringhelli, G., ‘Anisotropic beam theory and applications’, Computers & Structures 16, 1983, 403–413.

    Google Scholar 

  46. Wu, X. X. and Sun, C. T., ‘Vibration analysis of laminated composite thin-walled beams using finite elements’, AIAA Journal 29, 1991, 736–742.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, P.F., Nayfeh, A.H. A nonlinear composite beam theory. Nonlinear Dyn 3, 273–303 (1992). https://doi.org/10.1007/BF00045486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045486

Key words

Navigation