Skip to main content
Log in

Temperature effect on fracture behaviour of an alumina particulate-reinforced 6061-aluminium composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The effect of temperature on the fracture behaviour of a peak-aged alumina particulate 6061 aluminium composite was studied in the range of 25 to 180° C. The fracture toughness was found to be independent of test temperature. The role of the reinforcement phase was examined in detail at 180° C, and compared to observations at room temperature, by using an interrupted test methodology. Ductile fracture occurred at all temperatures. At room temperature the fractured particles acted as void nucleation sites and at 180° C both debonded and fractured particles were responsible for void nucleation. Large particles were found to be susceptible to fracture and nucleate microvoids earlier than small particles. A decrease in the range and size of the reinforcement phase would increase the fracture resistance for this MMC material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Fishman,J. Metals 38, 1986, 26.

    Google Scholar 

  2. S. V. Nair, J. K. Tien, and R. C. Bates,Int. Met. Rev. 30, 1985, 275.

    Google Scholar 

  3. A. H. M. Howes,J. Metals bf 38, 1986, 28.

    Google Scholar 

  4. A. P. Divecha, S. G. Fishman, and S. D. Karmarker,J. Metals,33, 1981, 12.

    Google Scholar 

  5. Y. Flom and R. J. Arsenault,Mater. Sci. Eng. 77, 1986, 191.

    Google Scholar 

  6. D. L. McDanels,Metall. Trans. A,16, 1985, 1105.

    Google Scholar 

  7. T. G. Nieh, K. Xia, and T. G. Landon,J. Eng. Mater. & Techn. 110, 1986, 77.

    Google Scholar 

  8. M. A. Martinez, A. Martin, and J. Llorca,Scripta Metall. Mater. 28, 1993, 207.

    Google Scholar 

  9. A. F. Whitehouse and T. W. Clyne, Proceedings of ICCM/9 Madrid, 1993, 393.

  10. B. P. Somerday, Y. Leng, F. E. Wawner, and R. P. Gangloff,Advanced metal-matrix composites for elevated, temperature, ASM, Metal Park, Ohio, 1991, 167.

    Google Scholar 

  11. D. L. Davidson,Metall. Trans. A 18, 1987, 2115.

    Google Scholar 

  12. M. J. Hadianfard, J. Healy, and Y. W. Mai,J. Mater. Sci. 29, 1994, 2321.

    Google Scholar 

  13. C. Voituriez and I. W. Hall,J. Mater. Sci. 26, 1991, 4241.

    Google Scholar 

  14. W. S. Miller and F. J. Humphreys,Fundamental relationship between microstructure & mechanical properties of metal-matrix composites, The Minerals, Metals & Materials Society, Warrendale, 1990, 517.

    Google Scholar 

  15. C. Zener,Fracturing of metals, ASM, Cleveland, Ohio, 1948, 3.

    Google Scholar 

  16. I. Dutta and D. L. Bourell,Acta Metall. Mater. 38, 1990, 2041.

    Google Scholar 

  17. K. Suganuma, T. Okamoto, T. Hayami, Y. Oku, and N. SuzukiJ. Mater. Sci. 23, 1988, 1317.

    Google Scholar 

  18. J. K. Shang and R. O. Ritchie,Metall. Trans. A,20, 1988, 897.

    Google Scholar 

  19. R. H. Vanston, R. H. Merchant, and J. R. Low,ASTM STP 556, 1974, 93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave at the Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadianfard, M.J., Healy, J. & Mai, YW. Temperature effect on fracture behaviour of an alumina particulate-reinforced 6061-aluminium composite. Appl Compos Mater 1, 93–113 (1994). https://doi.org/10.1007/BF00567572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00567572

Key words

Key words

Navigation