Skip to main content
Log in

Quantum-mechanical and classical simulations of Mg-Ca carbonates

  • Published:
Molecular Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Goldsmith, J.R. (1983) Phase relations of rombohedral carbonates, in R.J.Reeder (ed.), Carbonates: Mineralogy and Chemistry, Rev. Mineral. vol. 11, Mineralogical Society of America, Washington, pp. 49–76.

    Google Scholar 

  2. Speer, J.A. (1983) Crystal chemistry and phase relations of orthorhombic carbonates, in R.J.Reeder (ed.), Carbonates: Mineralogy and Chemistry, Rev. Mineral. vol. 11, Mineralogical Society of America, Washington, pp. 145–189.

    Google Scholar 

  3. Carlson, W.D. (1983) The polymorphs of CaCO3 and the aragonite- calcite transformation, in R.J.Reeder (ed.), Carbonates: Mineralogy and Chemistry, Rev. Mineral. vol. 11, Mineralogical Society of America, Washington, pp. 191–225.

    Google Scholar 

  4. Williams, Q., Collerson, B., and Knittle, E. (1992) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures, Am. Mineral. 77, 1158–1165.

    Google Scholar 

  5. Catti, M., Pavese, A., Dovesi, R., and Saunders, V.R. (1993) Static lattice and electron properties of MgCO3 (magnesite), by ab initio periodic Hartree-Fock calculations, Phys. Rev. B47, 9189–9198.

    Google Scholar 

  6. Pavese, A., Catti, M., Price, G.D., and Jackson, R.A. (1992) Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data, Phys. Chem. Minerals 19, 80–87.

    Google Scholar 

  7. Catti, M., Pavese, A., and Price, G.D. (1993) Thermodynamic properties of CaCO3 calcite and aragonite: a quasi-harmonic calculation, Phys. Chem. Minerals 19, 472–479.

    Google Scholar 

  8. Dove, M.T., Winkler, B., Leslie, M., Harris, M.J., and Salje, E.K.H. (1992) A new interatomic potential model for calcite: applications to lattice dynamics studies, phase transition, and isotope fractionation, Am. Mineral. 77, 244–250.

    Google Scholar 

  9. Pisani, C., Dovesi, R., and Roetti, C. (1988) Hartree-Fock Ab Initio Treatment of Crystalline Solids, Vol. 48 of Lecture Notes in Chemistry, Springer-Verlag, Berlin.

    Google Scholar 

  10. Catti, M., Dovesi, R., Pavese, A., and Saunders, V.R. (1991) Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study, J. Phys.: Condens. Matter 3, 4151–4164.

    Google Scholar 

  11. Catti, M., Pavese, A., Dovesi, R., Roetti, C., and Causà, M. (1991) Quantum-mechanical Hartree-Fock self-consistent-field study of the elastic constants and chemical bonding of MgF2 (sellaite), Phys. Rev. B 44, 3509–3517.

    Google Scholar 

  12. Catti, M., Valerio, G., Dovesi, R., and Causà, M. (1994) Quantum-mechanical calculation of the solid-state equilibrium MgO+α-Al2O3 MgAl2O4 (spinel) versus pressure. Phys. Rev., B49, 14179–14187.

    Google Scholar 

  13. Car, R. and Parrinello, M. (1985) Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474.

    Google Scholar 

  14. Catti, M. (1986) Theoretical computation of physical properties of mantle minerals, in S.K.Saxena (ed.), Chemistry and Physics of Terrestrial Planets, Advances in Physical Geochemistry, Vol. 6, Springer Verlag, Berlin, pp. 224–250.

    Google Scholar 

  15. Price, G.D. and Parker, S.C. (1988) The computer simulation of the lattice dynamics of silicates, in E.K.H.Salje (ed.), Physical properties and thermodynamic behaviour of minerals, NATO ASI Series C, Vol. 225, Reidel, Boston, pp. 591–618.

    Google Scholar 

  16. Winkler, B., Dove, M.T., and Leslie, M. (1991) Static lattice energy minimization and lattice dynamics calculations on alumino-silicate minerals, Am. Mineral. 76, 313–331.

    Google Scholar 

  17. Parker, S.C. and Price, G.D. (1989) Computer modelling of phase transitions in minerals, Advances in Solid State Chemistry 1, 295–327.

    Google Scholar 

  18. Yuen, P.S., Lister, M.W., and Nyburg, S.C. (1978) The four-center charge distribution of the carbonate ion and the lattice energies of calcite and aragonite, J. Chem. Phys. 68, 1936–1941.

    Google Scholar 

  19. Yamamoto, A., Shiro, Y., and Murata, H. (1974) Optically-active vibrations and elastic constants of calcite and aragonite, Bull. Chem. Soc. Japan 47, 265–273.

    Google Scholar 

  20. Salje, E. and Viswanathan, K. (1976) The phase diagram calcite- aragonite as derived from the crystallographic properties, Contrib. Mineral. Petrol. 55, 55–67.

    Google Scholar 

  21. Dovesi, R., Saunders, V.R.S., and Roetti, C. (1992) CRYSTAL92. User's Manual, Gruppo di Chimica Teorica, Universitá di Torino.

  22. Hehre, W.H., Radom, L., Schleyer, P.R., and Pople, J.A. (1986) Ab Initio Molecular Orbital Theory, Wiley, New York.

    Google Scholar 

  23. Dick, B.G. and Overhauser, A.W. (1958) Theory of the dielectric constants of alkali halide crystals, Phys. Res. 112, 90–103.

    Google Scholar 

  24. Leslie, M. (1985) A three-body potential model for the static simulation of defects in ionic crystals, Physica 131B, 145–150.

    Google Scholar 

  25. Markgraf, S.A. and Reeder, R.J. (1985) High-temperature structure refinements of calcite and magnesite. Am. Mineral. 70, 590–600.

    Google Scholar 

  26. Murnaghan, F.D. (1944) The compressibility of media under extreme pressures, Proc. Nat. Acad. Sci. USA 30, 244–247.

    Google Scholar 

  27. D'Arco, P., Jolly, L.H., and Silvi, B. (1992) Periodic Hartree- Fock study of B1–B2 reactions: phase transition in CaO, Phys. Earth Planet. Inter. 72, 286–298.

    Google Scholar 

  28. Causà, M., Dovesi, R., Pisani, C., and Roetti, C. (1986) Electronic structure and stability of different crystal phases of magnesium oxide, Phys. Rev. B 33, 1308–1316.

    Google Scholar 

  29. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C. (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687.

    Google Scholar 

  30. Merrill, L. and Bassett, W.A. (1975) The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate, Acta Crystallogr. B31, 343–349.

    Google Scholar 

  31. Ross, N.L. and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite, Am. Mineral. 77, 412–421.

    Google Scholar 

  32. Dandekar, D.P. (1968) Variation in the elastic constants of calcite with temperature, J. Appl. Phys. 39, 3694–3699.

    Google Scholar 

  33. Dandekar, D.P. and Ruoff, A.L. (1968) Temperature dependence of the elastic constants of calcite between 160 and 300 K, J. Appl. Phys. 39, 6004–6009.

    Google Scholar 

  34. Porto, S.P.S., Giordmaine, J.A., and Damen, T.C. (1966) Depolarization of Raman scattering in calcite, Phys. Rev. 147, 608–611.

    Google Scholar 

  35. Liu, L.G. and Mernagh, T.P. (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature, Am. Mineral. 75, 801–806.

    Google Scholar 

  36. Gillet, Ph., Biellmann, C., Reynard, B. and McMillan, P. (1993) Raman spectroscopic studies of carbonates, part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite, Phys. Chem. Minerals 20, 1–18.

    Google Scholar 

  37. Stavely, L.A.K. and Linford, R.G. (1969) The heat capacity and entropy of calcite and aragonite, and their interpretation, J. Chem. Thermodynamics, 1, 1–11.

    Google Scholar 

  38. Anderson, O.L. (1963) A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917.

    Google Scholar 

  39. Weast, R.C. (ed.) (1987) Handbook of Chemistry and Physics, Chemical Rubber Company, Boca Raton, Florida.

    Google Scholar 

  40. Goettlicher, S. and Vegas, A. (1988) Acta Crystallogr. B44, 362–367.

    Google Scholar 

  41. Tossel, J.A. (1985) Electron deficient anions and ion pairs, Physica 131B, 283–289.

    Google Scholar 

  42. Hellwege, K.H., Lesch, W., Plihal, M., and Schaack, G. (1970) Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur, Z. Physik 232, 61–86.

    Google Scholar 

  43. Cowley, E.R. and Pant, A.K. (1973) Lattice dynamics of calcite, Phys. Rev. B 8, 4795–4800.

    Google Scholar 

  44. Kaye, G.W.C. and Laby, T.H. (1982) Tables of physical and chemical constants, Longman, London.

    Google Scholar 

  45. Deer, W.A., Howie, R.A., and Zussman, J. (1966) An introduction to rock forming minerals, Longmans, London.

    Google Scholar 

  46. Voigt, W. (1910) Lehrbuch der Kristallphysik (reprinted 1928), Teubner, Leipzig.

    Google Scholar 

  47. Hearmon, R.F.S. (1946) The elastic constants of anisotropic meterials, Rev. Mod. Phys. 18, 409–440.

    Google Scholar 

  48. Schaefer, C. and Matossi, F. (1930) Das ultrarote Spektrum, Spinger, Berlin.

    Google Scholar 

  49. Bhagavantam, S. and Venkatarayudu, T. (1939) Raman effect in relation to crystal structure. Proc. Indian Acad. Sci. Sect. A. 9, 224–258.

    Google Scholar 

  50. Couture, L. (1947) Etude des spectres de vibrations de monocristaux ioniques, Ann. Physique Ser. 12, 2, 5–94.

    Google Scholar 

  51. Frech, R. and Wang, E.C. (1980) The i.r and Raman spectra of CaCO3 (aragonite), Spectrochim. Acta 36A, 915–919.

    Google Scholar 

  52. Jacobs, G.K., Kerrick, D.M., and Krupka, K.M. (1981) The high- temperature heat capacity of natural calcite (CaCO3), Phys. Chem. Minerals 7, 55–59.

    Google Scholar 

  53. Chessin, H., Hamilton, W.C. and Post, B. (1965) Position and thermal parameters of oxygen atoms in calcite, Acta Crystallogr. 18, 689–693.

    Google Scholar 

  54. Rao, K.V.K., Naidu, S.V.N., and Murthy, K.S. (1968) Precision lattice parameters and thermal expansion of calcite, J. Phys. Chem. Solids 29, 245–248.

    Google Scholar 

  55. Kieffer, S.W. (1979) Thermodynamics and lattice vibrations of minerals I, Rev. Geophys. Space Phys. 17, 1–19.

    Google Scholar 

  56. Kieffer, S.W. (1979) Thermodynamics and lattice vibrations of minerals II, Rev. Geophys. Space Phys. 17, 20–34.

    Google Scholar 

  57. Kieffer, S.W. (1979) Thermodynamics and lattice vibrations of minerals III, Rev. Geophys. Space Phys. 17, 35–58.

    Google Scholar 

  58. DeVilliers, J.P.R. (1971) Crystal structures of aragonite, strontianite, and witherite, Am. Mineral. 56, 758–767.

    Google Scholar 

  59. Effenberger, H., Mereiter, K., and Zeman, J. (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite and dolomite, with discussion of some aspects of the stereochemistry of calcite-type carbonates. Z. Kristallogr. 156, 233–243.

    Google Scholar 

  60. Humbert, M.M.P. and Plicque, F. (1972) Proprietés élastiques de carbonates rhomboédriques monocristallins: calcite, magnésite, dolomie, C. R. Acad. Sc. Paris 275, Série B, 391–394.

    Google Scholar 

  61. Catti, M., Pavese, A., Aprá, E., and Roetti, C. (1993) Quantum- mechanical Hartree-Fock study of calcite (CaCO3) at variable pressure, and comparison with magnesite (MgCO3), Phys. Chem. Minerals 20, 104–110.

    Google Scholar 

  62. Maslen, E.N., Streltsov, V.A., and Streltsova, N.R. (1993) X-ray study of the electron density in calcite, CaCO3, Acta Crystallogr. B49, 636–641.

    Google Scholar 

  63. Vo Thanh, D. and Lacam, A. (1984) Experimental study of the elasticity of single crystalline calcite under high pressure (the calcite I- calcite II transition at 14.6 kbar), Phys. Earth Planet. Inter. 34, 195–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catti, M., Pavese, A. Quantum-mechanical and classical simulations of Mg-Ca carbonates. Mol Eng 6, 113–156 (1996). https://doi.org/10.1007/BF00161725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161725

Key words

Navigation