Skip to main content
Log in

A new approach in the design of polar crystals for quadratic nonlinear optics exemplified by the synthesis and crystal structure of 2-amino-5-nitropyridinium dihydrogen monophosphate (2A5NPDP)

  • Published:
Molecular Engineering

Abstract

2-amino-5-nitropyridinium dihydrogen monophosphate exemplifies a new crystal engineering strategy combining mineral and organic moieties towards enhanced quadratic nonlinear optical properties. This strategy is meant to combine the advantages of mineral ionic structures (cohesion, stability, optical and other damage resistance) with those of organic molecules (structural flexibility, high optical polarizability). This organic inorganic material is designed so as to favour mutual dipolar interactions between the 2-amino-5-nitropyridinium cations and the (H2PO 4 ) n subnetwork interlocked by hydrogen bonding in the same crystalline lattice. This approach rests on the structural features and chemical properties of (H2PO 4 ) n polyanion. The 2A5NPDP structure reveals a polar layered arrangement. The high powder SHG efficiency of 2A5NPDP, comparable to that of state-of-the-art purely organic 3-methyl-4-nitropyridine-1-oxide (POM) crystals, confirms the validity of this approach, currently generalized to a large variety of mixed organo-mineral crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Masse and J. C.Grenier: Bull. Soc. Fr. Minéral. Cristallogr. 94, 437–439 (1971).

    Google Scholar 

  2. I.Tordjman, R.Masse, and J. C.Guitel: Z. für Kristallogr. 139, 103–115 (1974).

    Google Scholar 

  3. F. C.Zumsteg, J. D.Bierlein, and T. E.Gier: J. Appl. Phys. 47, 4980–4985 (1976).

    Google Scholar 

  4. J.Zyss, D. S.Chemla and J. F.Nicoud: J. Chem. Phys. 74(9), 4800–4811 (1981).

    Google Scholar 

  5. J. D.Bierlein and H.Vanherzeele: J. Opt. Soc. Am. B(6) 4, 622–633 (1989).

    Google Scholar 

  6. D.Blum, J. J.Peuzin, and J. Y.Henry: Ferroelectrics 61, 265–279 (1984).

    Google Scholar 

  7. D.Blum, A.Durif and M. T.Averbuch-Pouchot: Ferroelectrics 69, 283–292 (1986).

    Google Scholar 

  8. A.Elfakir, J. P.Souron, F.Robert, and M.Quarton: C.R. Acad. Sci. Paris 309, Série II, 199–203 (1989).

    Google Scholar 

  9. W. H.Zachariasen and F. A.Barth: Phys. Rev. 37, 1626–1630 (1931).

    Google Scholar 

  10. A.Rosenzweig and B.Morosin: Acta Cryst. 20, 758–761 (1966).

    Google Scholar 

  11. J. L.deBoer, F.vanBolhuis, R.Olthof-Hazekamp, and A.Vos: Acta Cryst. 21, 841–843 (1966).

    Google Scholar 

  12. G.Busch and P.Scherrer: Naturwissenschaften 43, 737 (1935).

    Google Scholar 

  13. A. R.Ubbelhode and I.Woodward: Proc. Roy. Soc. A188, 358–371 (1947).

    Google Scholar 

  14. G. E.Bacon and R. S.Pease: Proc. Roy. Soc. A220, 397 (1953).

    Google Scholar 

  15. B. C.Frazer and R.Pepinsky: Acta Cryst. 6, 273–285 (1953).

    Google Scholar 

  16. G. E.Bacon and R.Pease: Proc. Roy. Soc. A230, 359–381 (1955).

    Google Scholar 

  17. B. T.Matthias, C. E.Millerand, and J. P.Remeika: Phys. Rev. 104, 849–850 (1956).

    Google Scholar 

  18. S.Hoshino, Y.Okaya, and R.Pepinsky: Phys. Rev. 115(2), 323–330 (1959).

    Google Scholar 

  19. M. T.Averbuch-Pouchot and A.Durif: Ferroelectrics 52, 271–279 (1984).

    Google Scholar 

  20. Y. F.Nicolau: Ferroelectrics 52, 281–291 (1984).

    Google Scholar 

  21. S.Guillot Gauthier, J. C.Peuzin, M.Olivier, and G.Rolland: Ferroelectrics 52, 293–306 (1984).

    Google Scholar 

  22. D. S. Chemla and J. Zyss: Nonlinear Optical Properties of Organic Molecules and Crystals. Quantum Electronics. Principles and Applications. Academic Press, Inc. (1987), Vol.1 (a) J. Zyss and D. S. Chemla, 23–191; (b) J. F. Nicoud and R. J. Twieg, 227–296.

  23. M.Barzoukas, M.Blanchard-Desce, D.Josse, J.-M.Lehn, and J.Zyss: Chemical Physics 133, 323–329 (1989).

    Google Scholar 

  24. B. F.Levine and C. G.Bethea: Appl. Phys. Lett. 24(9), 445–447 (1974).

    Google Scholar 

  25. B. F.Levine and C. G.Bethea: J. Chem. Phys. 63(6), 2666–2682 (1975).

    Google Scholar 

  26. J. L.Oudar and H.LePerson: Opt. Comm. 15(2), 258–262 (1975); 18(3), 410–411 (1976).

    Google Scholar 

  27. J. L.Oudar: J. Chem. Phys. 67, 446–457 (1977).

    Google Scholar 

  28. J.Zyss and J. L.Oudar: Physical Rev. A 26(4), 2028–2048 (1982).

    Google Scholar 

  29. J. L.Oudar and R.Hierle: J. Appl. Phys. 48, 2699–2704 (1977).

    Google Scholar 

  30. J.Zyss, J. F.Nicoud, and M.Coquillay: J. Chem. Phys. 81, 4160–4167 (1984).

    Google Scholar 

  31. M.Barzoukas, D.Josse, P.Fremaux, J.Zyss, J. F.Nicoud, and J. O.Morley: J. Opt. Soc Am. B 4(6), 977–986 (1987).

    Google Scholar 

  32. M.Shiro, M.Yamakawa, and T.Kubota: Acta Cryst. B33, 1549–1556 (1977).

    Google Scholar 

  33. M.Sigelle, J.Zyss, and R.Hierle: J. Non Cryst. Solids 47, 287–290 (1982).

    Google Scholar 

  34. P. V.Vidakovic, M.Coquillay, and F.Salin: J. Opt. Soc. Am. B(4)6, 998–1012 (1987).

    Google Scholar 

  35. Nonlinear Optical Properties of Organic and Polymeric Materials. ACS Symposium Series, 233-American Chemical Society (1983), G. R. Meredith, 2, 27–56.

  36. R. F.Ziolo, W. H. H.Günther, G. R.Meredith, D. J.Williams, and J. M.Troup: Acta Cryst. B38, 341–343 (1982).

    Google Scholar 

  37. S. D.Cox, T. E.Gier, G. D.Stucky, and J.Bierlein: J. Am. Chem. Soc. 110, 2986–2987 (1988).

    Google Scholar 

  38. R. J.Nelmes and R. N. P.Choudhary: Solid State Comm. 26, 823–826 (1978).

    Google Scholar 

  39. J. M.Adams: Acta Cryst. B33, 1513–1515 (1977).

    Google Scholar 

  40. R.Masse and A.Durif: Zeit. für Kristallogr. 190, 19–32, (1990).

    Google Scholar 

  41. R. H.Blessing: Acta Cyst. B42, 613–621 (1986).

    Google Scholar 

  42. M.Bagieu-Beucher, A.Durif, and J. C.Guitel: Acta Cryst. C45, 421–423 (1989).

    Google Scholar 

  43. G. R.Freeman, R. A.Hearn, and C. E.Bugg: Acta Cryst. B28, 2906–2912 (1972).

    Google Scholar 

  44. K.Aoki, K.Nagano, and Y.Iitaka: Acta Cryst. B27, 11–23 (1971).

    Google Scholar 

  45. W.Saenger and K. G.Wagner: Actst. B28, 2237–2244 (1972).

    Google Scholar 

  46. M. T.Averbuch-Pouchot, A.Durif, and J. C.Guitel: Acta Cryst. C44, 890–892 (1988).

    Google Scholar 

  47. H.Hebert: Acta Cryst. B34, 611–615 (1978).

    Google Scholar 

  48. M. T. Averbuch-Pouchot and A. Durif (unpublished results).

  49. M. T.Averbuch-Pouchot, A.Durif, and J. C.Guitel: Acta Cryst. C44, 1968–1972 (1988).

    Google Scholar 

  50. French Patent 9014743 currently extended to U.S.A., Japan and E.E.C.

  51. P.Main, L.Lessinger, M. M.Woolfson, G.Germain, and J. P.Declercq: A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. University of York, England, and Louvain-La-Neuve, Belgium (1977).

    Google Scholar 

  52. R. Steward, E. R. Davidson and W. T. Simpson: International Tables for X-ray Crystallography, Vol. IV, Table 2-2C, Birmingham, The Kynoch Press.

  53. Structure determination package, version RSX11M, September 1977, Enraf Nonius, Delft.

  54. R. X.Fischer: Struplo 84. A fortran program for crystal structure illustrations in polyhedral representation, J. Appl. Crystallogr. 18, 258–262 (1985).

    Google Scholar 

  55. C. K. Johnson: Ortep Program, Oak Ridge National Laboratory, (1965), Report ORNL-3794.

  56. R. A.Hearn and C. E.Bugg: Acta Cryst. B28, 3662–3667 (1972).

    Google Scholar 

  57. T. W.Panunto, Z.Urbanczyk-Lipkowska, R.Johnson, and M. C.Etter: J. Am. Chem. Soc. 109, 7786–7797 (1987).

    Google Scholar 

  58. K. N.Trueblood, E.Goldish, and J.Donohue: Acta Cryst. 14, 1009–1017 (1961).

    Google Scholar 

  59. M.Colapietro, A.Domenicano, C.Marciante, and G. Z.Portalone: Naturforsch. 37B, 1309–1311 (1982).

    Google Scholar 

  60. S. K.Kurtz and T. T.Perry: J. of A Phys. 39, 3798 (1968).

    Google Scholar 

  61. M. T.Averbuch-Pouchot, A.Durif, and J. C.Guitel: Acta Cryst. C44, 99–102 (1988).

    Google Scholar 

  62. C. B.Aekeroy, P. B.Hitchcock, B. D.Moyle and K. R.Seddon: J. Chem. Soc., Chem. Commun. 23, 1856–1859 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masse, R., Zyss, J. A new approach in the design of polar crystals for quadratic nonlinear optics exemplified by the synthesis and crystal structure of 2-amino-5-nitropyridinium dihydrogen monophosphate (2A5NPDP). Mol Eng 1, 141–152 (1991). https://doi.org/10.1007/BF00420050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420050

Key words

Navigation