Skip to main content
Log in

The homeodomain transcription factor CDP/cut interacts with the cell cycle regulatory element of histone H4 genes packaged into nucleosomes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The homeodomain transcription factor CDP/cut contains four separate DNA binding domains and interacts with large segments of DNA. Thus, CDP/cut has the potential to function as an architectural protein and perhaps to support modifications in chromatin structure and nucleosomal organization. To begin to examine the ability of CDP/cut to interact with chromatin, we analyzed binding of CDP/cut to the histone H4 gene promoter (−90 to +75) reconstituted into nucleosome cores. The −90 to +75 region encompasses the cell cycle regulatory element (Site II) that controls histone H4 gene transcription, a CDP/cut binding site and a nuclease hypersensitive region. Using electrophoretic mobility shift assays and DNase I footprinting experiments, we show that CDP/cut specifically interacts with its recognition motif in a nucleosomal context without displacing the nucleosome core. The competency of CDP/cut to interact with nucleosomes suggests that this transcription factor may facilitate chromatin remodeling in response to cell cycle regulatory and/or developmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piã B, Brüggemeier U & Beato M (1990) Cell 60: 719–731.

    PubMed  Google Scholar 

  2. Blomquist P, Li Q & Wrange 0 (1996) J. Biol. Chem. 271: 153–159.

    PubMed  Google Scholar 

  3. Taylor ICA, Workman JL, Schuetz TJ & Kingston RE (1991) Genes Dev. 5: 1285–1298.

    PubMed  Google Scholar 

  4. Knezetic JA & Luse DS (1986) Cell 45: 95–104.

    PubMed  Google Scholar 

  5. Workman JL, Taylor IC, Kingston RE & Roeder RG (1991) Methods Cell Biol. 35: 419–47: 419–447.

    PubMed  Google Scholar 

  6. Lorch Y, LaPointe JW & Kornberg RD (1988) Cell 55: 743–744.

    PubMed  Google Scholar 

  7. Imbalzano AN, Kwon H, Green MR & Kingston RE (1994) Nature 370: 481–485.

    PubMed  Google Scholar 

  8. Cote J, Quinn J, Workman JL & Peterson CL (1994) Science 265: 53–60.

    PubMed  Google Scholar 

  9. Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE & Young RA (1996) Cell 84: 235–244.

    PubMed  Google Scholar 

  10. Owen-Hughes T & Workman JL (1996) EMBO J. 15: 4702–4712.

    PubMed  Google Scholar 

  11. Wolffe AP (1994) Trends. Biochem. Sci. 19: 240–244.

    PubMed  Google Scholar 

  12. Struhl K (1996) Cell 84: 179–182.

    PubMed  Google Scholar 

  13. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY & Allis CD (1996) Cell 84: 843–851.

    Article  PubMed  Google Scholar 

  14. Ogryzko VV, Schiltz RL, Russanova V, Howard BH & Nakatani Y (1996) Cell 87: 953–959.

    Google Scholar 

  15. Yang WM, Inouye CJ, Zeng Y, Bearss D & Seto E (1996) Proc. Natl. Acad. Sci. USA 93: 12845–12850.

    PubMed  Google Scholar 

  16. Workman JL & Kingston RE (1992) Science 258: 1780–1784.

    PubMed  Google Scholar 

  17. Perlmann T & Wrange O (1988) EMBO J. 7: 3073–3079.

    PubMed  Google Scholar 

  18. Wechsler DS, Papoulas O, Dang CV & Kingston RE. (1994) Mol. Cell. Biol. 14: 4097–4107.

    PubMed  Google Scholar 

  19. Rhodes D (1985) EMBO J. 4: 3473–3482.

    PubMed  Google Scholar 

  20. Li B, Adams CC & Workman JL (1994) J. Biol. Chem. 269: 7756–7763.

    PubMed  Google Scholar 

  21. Barberis A, Superti-Furga G & Busslinger M (1987) Cell 50: 347–359.

    PubMed  Google Scholar 

  22. van den Ent FM, vanWijnen AJ, Lian JB, Stein JL & Stein GS (1994) J. Cell. Physiol. 159: 515–530.

    PubMed  Google Scholar 

  23. van Wijnen AJ, van Gurp MF, de Ridder MC, Tufarelli C, Last TJ, Birnbaum M, Vaughan PS, Giordano A, Krek W, Neufeld EJ, Stein JL & Stein GS (1996) Proc. Natl. Acad. Sci. USA 93: 11516–11521.

    PubMed  Google Scholar 

  24. El-Hodiri HM & Perry M (1995) Mol. Cell Biol. 15: 3587–3596.

    PubMed  Google Scholar 

  25. Coqueret O, Berube G & Nepveu A (1998) EMBO J 17: 4680–4694.

    PubMed  Google Scholar 

  26. Lievens PM, Donady JJ, Tufarelli C & Neufeld EJ (1995) J Biol. Chem. 270: 12745–12750.

    PubMed  Google Scholar 

  27. Skalnik DG, Strauss EC & Orkin SH (1991) J Biol. Chem. 266: 16736–16744.

    PubMed  Google Scholar 

  28. Dufort D & Nepveu A (1994) Mol. Cell Biol. 14: 4251–4257.

    PubMed  Google Scholar 

  29. Superti-Furga G, Barberis A, Schaffner G & Busslinger M (1988) EMBO J 7: 3099–3107.

    PubMed  Google Scholar 

  30. Tufarelli C, Fujiwara Y, Zappulla DC & Neufeld EJ (1998) Dev. Biol. 200: 69–81.

    PubMed  Google Scholar 

  31. Zeng WR, Scherer SW, Koutsilieris M, Huizenga JJ, Filteau F, Tsui LC & Nepveu A (1997) Oncogene 14: 2355–2365.

    PubMed  Google Scholar 

  32. Neufeld EJ, Skalnik DG, Lievens PM & Orkin SH (1992) Nat. Genet. 1: 50–55.

    PubMed  Google Scholar 

  33. Pattison S, Skalnik DG & Roman A (1997) J Virol. 71: 2013–2022.

    PubMed  Google Scholar 

  34. Aufiero B, Neufeld EJ & Orkin SH. (1994) Proc. Natl. Acad. Sci. USA 91: 7757–7761.

    PubMed  Google Scholar 

  35. Mailly F, Berube G, Harada R, Mao PL, Phillips S & Nepveu A (1996) Mol. Cell Biol. 16: 5346–5357.

    PubMed  Google Scholar 

  36. Banan M, Rojas IC, Lee WH, King HL, Harriss JV, Kobayashi R, Webb CF & Gottlieb PD (1997) J. Biol. Chem. 272: 18440–18452.

    PubMed  Google Scholar 

  37. Pauli U, Chrysogelos S, Nick H, Stein G & Stein J. (1989) Nucl. Acids Res. 17: 2333–2350.

    PubMed  Google Scholar 

  38. Ramsey-Ewing A, van Wijnen AJ, Stein GS & Stein JL. (1994) Proc. Natl. Acad. Sci. USA 91: 4475–4479.

    PubMed  Google Scholar 

  39. Holthuis J, Owen TA, van Wijnen AJ, Wright KL, Ramsey-Ewing A, Kennedy MB, Carter R, Cosenza SC, Soprano KJ, Lian JB & et al. (1990) Science 247: 1454–1457.

    PubMed  Google Scholar 

  40. van Wijnen AJ, Cooper C, Odgren P, Aziz F, De Luca A, Shakoori RA, Giordano A, Quesenberry PJ, Lian JB, Stein GS & Stein JL (1997) J Cell Biochem 66: 512–523.

    PubMed  Google Scholar 

  41. Last TJ, Birnbaum M, van Wijnen AJ, Stein GS & Stein JL (1998) Gene 221: 267–277.

    PubMed  Google Scholar 

  42. van Wijnen AJ, Aziz F, Grana X, De Luca A, Desai RK, Jaarsveld K, Last TJ, Soprano K, Giordano A, Lian JB & et al. (1994) Proc. Natl. Acad. Sci. USA 91: 12882–12886.

    PubMed  Google Scholar 

  43. Aziz F, van Wijnen AJ, Stein JL & Stein GS (1998) J. Cell. Physiol. 177: 453–464.

    PubMed  Google Scholar 

  44. Harada R, Berube G, Tamplin OJ, Denis-Larose C & Nepveu A (1995) Mol. Cell Biol. 15: 129–140.

    PubMed  Google Scholar 

  45. Workman JL & Roeder RG. (1987) Cell 51: 613–622.

    PubMed  Google Scholar 

  46. vanWijnen AJ, van den Ent FM, Lian JB, Stein JL & Stein GS (1992) Mol. Cell. Biol. 12: 3273–3287.

    PubMed  Google Scholar 

  47. Ausubel FM, B rent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K. (1989) Current Protocols in Molecular Biology. Greene and Wiley, New York.

    Google Scholar 

  48. Adams CC & Workman JL. (1995) Mol. Cell. Biol. 15: 1405–1421.

    PubMed  Google Scholar 

  49. Chen H, Li B & Workman JL. (1994) EMBO J. 13: 380–390.

    PubMed  Google Scholar 

  50. Walter PP, Owen-Hughes TA, Cote J & Workman JL. (1995) Mol. Cell Biol. 15: 6178–6187.

    PubMed  Google Scholar 

  51. Coqueret O, Martin N, Berube G, Rabbat M, Litchfield DW & Nepveu A (1998) J Biol. Chem. 273: 2561–2566.

    PubMed  Google Scholar 

  52. Coqueret O, Berube G & Nepveu A. (1996) J Biol. Chem. 271: 24862–24868.

    PubMed  Google Scholar 

  53. van Wijnen AJ, Ramsey-Ewing AL, Bortell R, Owen TA, Lian JB, Stein JL & Stein GS (1991) J. Cell. Biochem. 46: 174–189.

    PubMed  Google Scholar 

  54. Felsenfeld G (1992) Nature 335: 219–224.

    Google Scholar 

  55. Getzenberg RH, Pienta KJ, Ward WS & Coffey DS (1991) J. Cell Biochem. 47: 289–299.

    PubMed  Google Scholar 

  56. Gross DS & Garrard WT (1988) Ann. Rev. Biochem. 57: 159–197.

    PubMed  Google Scholar 

  57. Stein CA & Cheng YC (1993) Science 261: 1004–1012.

    PubMed  Google Scholar 

  58. Moreno ML, Pauli U, Chrysogelos S, Stein JL & Stein GS (1988) Biochem. Cell Biol. 66: 132–137.

    PubMed  Google Scholar 

  59. Chrysogelos S, Pauli U, Stein G & Stein J (1989) J. Biol. Chem. 264: 1232–1237.

    PubMed  Google Scholar 

  60. Pauli U, Chrysogelos S, Stein J & Stein G (1988) Proc. Natl. Acad. Sci. USA 85: 16–20.

    PubMed  Google Scholar 

  61. Luo RX, Postigo AA & Dean DC (1998) Cell 92: 463–473.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Last, T.J., van Wijnen, A.J., de Ridder, M.C. et al. The homeodomain transcription factor CDP/cut interacts with the cell cycle regulatory element of histone H4 genes packaged into nucleosomes. Mol Biol Rep 26, 185–194 (1999). https://doi.org/10.1023/A:1007058123699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007058123699

Navigation