Skip to main content
Log in

Response of Djun and Dfos mRNA abundance to signal transduction pathways in cultured cells of Drosophila melanogaster

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The mammalian proto-oncogenes c-jun and c-fos are situated at the end of multiple signal transduction pathways and activation of their products Jun and Fos, components of the transcription factor AP-1, are able to regulate gene transcription in response to extracellular stimuli. Djun and Dfos, the products of the Drosophila proto-oncongenes Djun and Dfos, are similar in size and sequence to their mammalian counterparts c-Jun and c-Fos and are related to their mammalian counterparts by their antigenic properties. However, very little is known about how they are regulated through signal transduction pathways. This paper has investigated the response of their mRNA abundance levels to three signal transduction pathways in Drosophila cultured cells. Various agonists and anagonists that stimulate and inhibit specific enzymes in the pathways have been tested. The results suggest that Djun and Dfos mRNA are continuously expressed and their abundance levels are transiently regulated by multiple signaling pathways, the peak response coming at 1–2 hours after perturbation. Dfos is more highly regulated than Djun which is only modulated. The receptor tyrosine kinase pathways positively regulate Dfos and Djun. The cAMP-mediated pathway positively regulates Dfos but negatively regulates Djun. The protein kinase C-activated pathway does not affect Djun whereas it negatively regulates Dfos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohmann D, Bos TJ, Admon A, Nishimura T, Vogt PK & Tjian R (1987) Science 238: 1386–1392

    PubMed  Google Scholar 

  2. Angel P, Allegretto EA, Okino ST, Hattori K, Boyle WJ, Hunter T & Karin M (1988) Nature 332: 166–171

    PubMed  Google Scholar 

  3. Hsu JC, Bravo R & Taub R (1992) Mol. Cell. Biol. 12: 4654–4665

    PubMed  Google Scholar 

  4. O'shea EK, Rutkowski R & Kim PS (1992) Cell 68: 699–708

    PubMed  Google Scholar 

  5. Kolla SS & Studzinski GP (1994) Cancer Res. 54: 1418–1421

    PubMed  Google Scholar 

  6. Bos TJ, Bohmann D, Tsuchie H, Tjian R, & Vogt, PK (1988) Cell 52: 705–712

    PubMed  Google Scholar 

  7. Kouzarides T & Ziff E (1988) Nature 336: 646–651

    Article  PubMed  Google Scholar 

  8. Sassone-Corsi P, Ransone LJ, Lamph WW, & Verma IM (1988b) Nature 336: 692–695

    PubMed  Google Scholar 

  9. Busch SJ & Sassone-Corsi P (1990) Trends Genet.6: 36–40

    PubMed  Google Scholar 

  10. Vogt P & Bos TJ (1990) Adv. Cancer Res. 55: 1–35

    PubMed  Google Scholar 

  11. Karin M (1991) In Molecular Aspects of Cellular Regulation, Vol. 6, 143

    Google Scholar 

  12. Perkins KK, Dailey GM & Tjian R (1988) EMBO J. 7: 4265–4273

    PubMed  Google Scholar 

  13. Farina AR, Davis-Smith T, Gardner K & Levens D (1993) J. Biol. Chem. 268: 26466–26475

    PubMed  Google Scholar 

  14. Busam KJ, Roberts AB & Sporn MB (1992) J. Biol. Chem. 267: 19971–19977

    PubMed  Google Scholar 

  15. Han TH & Prywes R. (1995) Mol. Cell. Biol. 15: 2907–2915

    PubMed  Google Scholar 

  16. Sassone-Corsi P, Visvader J, Ferland LH, Mellon PL & Verma IM (1988c) Genes Dev. 2: 1529–1538

    PubMed  Google Scholar 

  17. Zhang K, Chaillet R, Perkins LA, Halazonetis TD & Perimon N (1990) Proc. Natl. Acad. Sci. USA 87: 6281–6285

    PubMed  Google Scholar 

  18. Wang GL & Goldstein ES (1994) Exp. Cell Res. 214: 389–399

    PubMed  Google Scholar 

  19. Schonthal A, Srinivas S & Eckhart W(1992) Proc. Natl. Acad. Sci. USA 89: 4972–4976

    PubMed  Google Scholar 

  20. Angel P & Karin M (1991) Biochem. Biophys. Acta 1072: 129–157

    PubMed  Google Scholar 

  21. Morrison DK, Kaplan DR, Escobedo JA, Rapp UR, Roberts TM & Williams LT (1989) Cell 58: 649–657

    PubMed  Google Scholar 

  22. Margolis B, Rhee SG, Felder S, Mervic M, Lyall R, Levitzki A, Ullrich A, Ziberstein A, & Schlessinger J (1989) Cell 57: 1101–1107

    PubMed  Google Scholar 

  23. Trejo J, Massamiri T, Deng T, Dewji NN, Bayney RM & Brown JH (1994) J. Biol. Chem. 269: 21682–21690

    PubMed  Google Scholar 

  24. Hayes TE, Kitchen AM & Cochran BH (1987) Proc. Natl. Acad. Sci. USA 84: 1272–1276

    PubMed  Google Scholar 

  25. Sassone-Corsi P, Lamph WW & Verma, IM (1988a) Cold Spring Harb. Symp. Quant. Biol. 53: 749–760

    PubMed  Google Scholar 

  26. Ransone LJ & Verma, IM (1990) Ann. Rev. Cell Biol. 6: 539–557

    PubMed  Google Scholar 

  27. Rivera VM & Greenberg ME (1990) New Biol. 2: 751–758

    PubMed  Google Scholar 

  28. Cohen DR, Ferreira PCP, Gentz R, Franza BR & Curran T (1989) Genes Dev. 3: 173–184

    PubMed  Google Scholar 

  29. Baker SJ, Kerppola TK, Luk D, Vandengerg MT, Marshak OR, Curran T & Abate C (1992) Mol. Cell. Biol. 12: 4694–4705

    PubMed  Google Scholar 

  30. Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, Murakata C, Sato A, & Kaneko M (1987) Biochem. Biophys. Res. Commun. 142: 436–440

    PubMed  Google Scholar 

  31. Franklin CC & Kraft AS (1992) Biochim Biophys Acta 1134(2): 137–142

    PubMed  Google Scholar 

  32. Wahl MI, Nishibe S, Suh PG, Rhee SG & Carpenter, G. (1989) Proc. Natl. Acad. Sci. USA 86: 1568–1572

    PubMed  Google Scholar 

  33. Kim R & Beck WT (1994) Cancer Res. 54: 4958–4966

    PubMed  Google Scholar 

  34. Reuse S, Pirson I & Dumont JE (1991) Exp. Cell Res. 196: 210–215

    PubMed  Google Scholar 

  35. Roger PP, Servais P & Dumont JE (1987a) Exp. Cell Res. 172: 282–292

    PubMed  Google Scholar 

  36. Roger PP, Servais P & Dumont JE (1987b) J. Cell. Physiol. 130: 58–67

    PubMed  Google Scholar 

  37. Hou SX, Goldstein ES & Perrimon N (1997) Genes Dev. 11: 1729–1737

    Google Scholar 

  38. Riesgo-Escovar JR & Hafen E (1997) Genes Dev. 11: 1717–1727

    PubMed  Google Scholar 

  39. Kockel L, Zeitlinger J, Staszewski LM, Mlodzik M. & Bohman D (1997) Genes Dev. 11: 1748–1758

    PubMed  Google Scholar 

  40. Riesgo-Escovar JR & Hafen E (1997) Science 278: 669–672

    PubMed  Google Scholar 

  41. Zeitlinger J, Kockel L, Peverali A, Jackson DB, Mlodzik M & Bohman D (1997) EMBO J 16 7393–7401

    PubMed  Google Scholar 

  42. Perkins KK, Adamon A, Patel N & Tjian R (1990) Genes Dev. 4: 822–834

    PubMed  Google Scholar 

  43. Yin JCP, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn WG & Tully T (1994) Cell 79: 49–58

    PubMed  Google Scholar 

  44. Cohen P, Holmes CFB & Tsukitani Y (1990) TIBS 15: 98–102

    PubMed  Google Scholar 

  45. Bialojan C & Takai A (1988) Biochem. J. 256: 283–290

    PubMed  Google Scholar 

  46. Ido M, Nagao Y, Higashigawa M, Shibata T, Taniguchi K, Hamazaki M & Sakurai M (1991) Brit. J. Cancer 64: 1103–1107

    PubMed  Google Scholar 

  47. Beckner SK & Farrar WL (1988) J. Immunol. 140: 208–214

    PubMed  Google Scholar 

  48. Torphy TJ, Zhou HL, Burman M & Huang LBF (1991) Mol. Pharmacol. 39: 376–384

    PubMed  Google Scholar 

  49. Nielson CP, Vestal RE, Sturm RJ & Heaslip, R. (1990) J. Allergy Clinical Immunol. 86: 801–807

    Google Scholar 

  50. Platanias LC & Colamonici OR (1992) J. Biol. Chem. 267: 24053–24957

    PubMed  Google Scholar 

  51. Hsu CYJ, Persons PE, Spada AP, Bednar RA, Levitzki A & Zilberstein A (1991) J. Biol. Chem. 266: 21105–21112

    PubMed  Google Scholar 

  52. Barg J, Belcheva MM & Coscia CJ (1992) J. Neurochem. 59: 1145–1152

    PubMed  Google Scholar 

  53. Mossman BT, Bignon J, Corn M, Seato A, & Gee, JBL (1990) Science 247: 294–301

    PubMed  Google Scholar 

  54. Kawamoto S & Hidaka H (1984) Biochem. Biophys. Res. Commun. 125: 258–264

    PubMed  Google Scholar 

  55. Garber M, Panchanathan S, Fan RS & Johnson DL (1991) J. Biol. Chem. 266: 20598–20601

    PubMed  Google Scholar 

  56. Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd ed., Cold Spring Harbor Laboratory, Cold spring Harbor, New York

    Google Scholar 

  57. Goldstein ES, Vincent WS & Schultz KA (1986) Biochim Biophys Acta. 867: 209–219

    PubMed  Google Scholar 

  58. Hibi M, Lin A, Smeal T, Minden A & Karin M (1993) Genes Dev. 7: 2135–2148

    PubMed  Google Scholar 

  59. Deng T & Karin M (1994) Nature 371: 171–175

    PubMed  Google Scholar 

  60. Akjyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M & Fukami, Y (1987) J. Biol. Chem. 262: 5592–5595

    PubMed  Google Scholar 

  61. Herbert JM, Augereau JM, Gleye J & Maffrand JP (1990) Biochem. Biophys. Res. Commun. 172: 993–999

    PubMed  Google Scholar 

  62. Wang GL & Goldstein ES (1993) Biochim Biophys Acta 1216: 94–104

    PubMed  Google Scholar 

  63. Wagner JP, Seidler FJ, Schachat FH & Slotkin TA (1994) J. Pharmacol. Exp. Therapeut. 269: 1292–1299

    Google Scholar 

  64. Zoeller RT & Fletcher DL (1994) Mol. Brain Res. 24: 185–191

    PubMed  Google Scholar 

  65. Traub RJ, Lim F, Sengupta JN, Meller ST & Gebhart GF (1994) Neuroscience Letters 180: 71–75

    PubMed  Google Scholar 

  66. Hopkins NK, Lin AH & Govman RR (1983) Biochim. Biophys. Acta 763: 276–283

    PubMed  Google Scholar 

  67. Minden A, Lin A, McMahon M, Longe-Carter C, Derijard B, Davis RJ, Johnson GL & Karin M (1994) Science 266: 1719–1723

    PubMed  Google Scholar 

  68. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J & Woodgett JR (1994) Nature 369: 156–169

    Article  PubMed  Google Scholar 

  69. Ness JM & Kasson BG (1993) Mol. Cell. Endocrinol. 90: 17–25

    Google Scholar 

  70. Tamura K, Tanimoto K, Murakami K & Fukamizu A (1993) Biochim Biophys Acta 1172: 306–310

    PubMed  Google Scholar 

  71. Noveral JP & Grunstein MM (1994) Am. J. Physiol. 267: L291–L299

    PubMed  Google Scholar 

  72. Sesko AM, Cabot M & Mossman BT (1990) Proc. Natl. Acad. Sci. USA 87: 7385–7389

    PubMed  Google Scholar 

  73. Heintz NH, Janssen YM & Mossman BT (1993) Proc. Natl. Acad. Sci. USA 90: 3299–3303

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, X., Goldstein, E.S. Response of Djun and Dfos mRNA abundance to signal transduction pathways in cultured cells of Drosophila melanogaster. Mol Biol Rep 26, 147–157 (1999). https://doi.org/10.1023/A:1006906419110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006906419110

Navigation