Skip to main content
Log in

Structure and functions of arthropod proteasomes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent work on structural/functional relationships in arthropod proteasomes is reviewed. Taking advantage of our ability to induce a stable, proteolytically-active conformation of the lobster proteasome, the structures of basal and heat-activated complexes were probed with exogenous proteases. Increased sensitivity to chymotrypsin and trypsin showed that heat activation induced a more ‘open’ conformation, allowing entry of large substrates into the catalytic chamber. In Drosophila, the effects of two developmental mutant alleles (DTS-7 and DTS-5) encoding proteasome subunits (Z and C5, respectively) on the subunit composition and catalytic activities of the enzyme were examined. Both qualitative and quantitative differences in compositions between wild-type (+/+) and heterozygotes (+/DTS) indicated that incorporation of mutant subunits alters post-translational modifications of the complex. Catalytic activities, however, were similar, which suggests that the developmental defect involves other proteasome properties, such as intracellular localization and/or interactions with endogenous regulators. A hypothetical model in which DTS subunits act as poison subunits is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mykles DL (1998) Int. Rev. Cytol. 184: 157–289

    Google Scholar 

  2. Mykles DL (1997) Comp. Biochem. Physiol. 117B: 367–378

    Google Scholar 

  3. Shean BS & Mykles DL (1995) Biochim. Biophys. Acta 1264: 312–322

    Google Scholar 

  4. Saville KJ & Belote JM(1993) Proc. Natl. Acad. Sci. USA 90: 8842–8846

    Google Scholar 

  5. Smyth KA & Belote JM (1999) Genetics 151: 211–220

    Google Scholar 

  6. Holden JJ & Suzuki DT (1973) Genetics 73: 445–458

    Google Scholar 

  7. Mykles DL (1989) Arch. Biochem. Biophys. 274: 216–228

    Google Scholar 

  8. Mykles DL (1989) J. Exp. Zool. 250: 244–252

    Google Scholar 

  9. Mykles DL & Haire MF (1991) Arch. Biochem. Biophys. 288: 543–551

    Google Scholar 

  10. Mykles DL (1993) Enzyme Protein 47: 220–231

    Google Scholar 

  11. Mykles DL & Haire MF (1995) Biochem. J. 306: 285–291

    Google Scholar 

  12. Mykles DL (1996) Arch. Biochem. Biophys. 325: 77–81

    Google Scholar 

  13. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94: 615–623

    Google Scholar 

  14. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD & Huber R (1997) Nature 386: 463–471

    Google Scholar 

  15. Kopp F, Hendil KB, Dahlmann B, Kristensen P, Sobek A & Uerkvitz W(1997) Proc. Natl. Acad. Sci. USA 94: 2939–2944

    Google Scholar 

  16. Mykles DL (1997) Mol. Biol. Rep. 24: 133–138

    Google Scholar 

  17. McCormack TA, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Plamondon L, Stein RL & Dick LR (1998) Biochemistry 37: 7792–7800

    Google Scholar 

  18. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S & Finley D (1998) EMBO J. 17: 4909–4919

    Google Scholar 

  19. Schwartz LM, Myer A, Kosz L, Engelstein M & Maier C (1990) Neuron 5: 411–419

    Google Scholar 

  20. Dawson SP, Arnold JE, Mayer NJ, Reynolds SE, Billett MA, Gordon C, Colleaux L, Kloetzel PM, Tanaka K & Mayer RJ (1995) J Biol Chem 270: 1850–1858

    Google Scholar 

  21. Haas AL, Baboshina O, Williams B & Schwartz LM (1995) J. Biol. Chem. 270: 9407–9412

    Google Scholar 

  22. Jones MEE, Haire MF, Kloetzel P-M, Mykles DL & Schwartz LM (1995) Enzyme Protein 48: 323.

    Google Scholar 

  23. Takayanagi K, Dawson S, Reynolds SE & Mayer RJ (1996) Biochem. Biophys. Res. Commun. 228: 517–523

    Google Scholar 

  24. Löw P, Bussell K, Dawson SP, Billett MA, Mayer RJ & Reynolds SE (1997) FEBS Lett. 400: 345–349

    Google Scholar 

  25. Meuser S & Pflüger HJ (1998) J. Exp. Biol. 201: 2367–2382

    Google Scholar 

  26. Kobayashi M & Ishikawa H (1994) J. Insect Physiol. 40: 107–111

    Google Scholar 

  27. Davis WL, Jacoby BH & Goodman DBP (1994) Histochem. J. 26: 298–305

    Google Scholar 

  28. Niedzwiecki A & Fleming JE (1993) Dev. Genet. 14: 78–86

    Google Scholar 

  29. Lee H, Simon JA & Lis JT (1988) Mol. Cell. Biol. 8: 4727–4735

    Google Scholar 

  30. Myer A & Schwartz LM (1996) Insect Biochem. Mol. Biol. 26: 1037–1046

    Google Scholar 

  31. Anchordoguy TJ & Hand SC (1994) Am. J. Physiol. 267: R895–R900

    Google Scholar 

  32. Anchordoguy TJ & Hand SC (1995) J. Exp. Biol. 198: 1299–1305

    Google Scholar 

  33. Ma E & Haddad GG (1997) Mol. Brain. Res. 46: 325–328

    Google Scholar 

  34. Zhang N, Wilkinson K & Bownes M (1993) Dev. Biol. 157: 214–223

    Google Scholar 

  35. Fischer-Vize JA, Rubin GM & Lehmann R (1992) Development 116: 985–1000

    Google Scholar 

  36. Yuan XQ, Miller M & Belote JM (1996) Genetics 144: 147–157

    Google Scholar 

  37. Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg LL, Wasserman SA & Gatti M (1997) Genes. Dev. 11: 863–875

    Google Scholar 

  38. Wu LP & Anderson KV (1998) Nature 392: 93–97

    Google Scholar 

  39. Nicolas E, Reichhart JM, Hoffmann JA & Lemaitre B (1998) J. Biol. Chem. 273: 10463–10469

    Google Scholar 

  40. Ichimura S, Mita K & Numata M(1994) Insect Biochem. Mol. Biol. 24:,717–722

    Google Scholar 

  41. Belvin MP, Jin Y & Anderson KV (1995) Genes Dev. 9: 783–793

    Google Scholar 

  42. Reach M, Galindo RL, Towb P, Allen JL, Karin M & Wasserman SA (1996) Dev. Biol. 180: 353–364

    Google Scholar 

  43. Huang YZ, Baker RT & Fischer-Vize JA (1995) Science 270: 1828–1831

    Google Scholar 

  44. Henchoz S, De Rubertis F, Pauli D & Spierer P (1996) Mol. Cell. Biol. 16: 5717–5725

    Google Scholar 

  45. Huang YZ & Fischer-Vize JA (1996) Development 122: 3207–3216

    Google Scholar 

  46. Li SH, Li Y, Carthew RW & Lai ZC (1997) Cell 90: 469–478

    Google Scholar 

  47. Haass C, Pesold-Hurt B, Multhaup G, Beyreuther K & Kloetzel P-M (1989) EMBO J. 8: 2373–2379

    Google Scholar 

  48. Haass C, Pesold-Hurt B, Multhaup G, Beyreuther K & Kloetzel P-M (1990) Gene 90: 235–241

    Google Scholar 

  49. Haass C, Pesold-Hurt B & Kloetzel P-M (1990) Nucleic Acids Res. 18: 4018

    Google Scholar 

  50. Seelig A, Troxell M & Kloetzel P-M (1993) Biochim. Biophys. Acta. 1174: 215–217

    Google Scholar 

  51. Zaiss D & Belote JM (1997) Gene 201: 99–105

    Google Scholar 

  52. Haire MF, Clark JJ, Jones MEE, Hendil KB, Schwartz LM & Mykles DL (1995) Arch. Biochem. Biophys. 318: 15–24

    Google Scholar 

  53. Clark JJ, Ilgen TL, Haire MF & Mykles DL (1991) Comp. Biochem. Physiol. 99B: 413–417

    Google Scholar 

  54. Chevallet M, Procaccio V & Rabilloud T (1997) Anal. Biochem. 251: 69–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykles, D.L. Structure and functions of arthropod proteasomes. Mol Biol Rep 26, 103–111 (1999). https://doi.org/10.1023/A:1006976524916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006976524916

Navigation