Skip to main content
Log in

Effects of polyamines on higher-order folding of in situ chromatin

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Modifications of the higher-order chromatin structure induced by polyamines have been quantitatively investigated in situ through a non-invasive biophysical approach using Differential Scanning Calorimetry and Quantitative Fluorescence Microscopy. Calorimetric and intensitometric profiles have been acquired for samples of native thymocytes, alternatively suspended in buffers, with or without natural polyamines (spermine and spermidine). The results here reported show that the structure and distribution of nuclear chromatin in situ considerably change upon the ionic composition of the environment. A quantitative analysis of this data and a comparison with previous results obtained from isolated chromatin fibers was carried out. Finally, an inverse relationship between chromatin condensation and nuclear volume was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark DJ & Kimura T (1990) Mol. Biol. 211: 883–896

    Google Scholar 

  2. Van Holde KE (1989) Chromatin Structure, Springer Verlag, NY

    Google Scholar 

  3. Wolffe A (1994) Chromatin structure and function. Academic Press Inc., London

    Google Scholar 

  4. Nicolini C (1997) Genome Structure and function, NATO ASI Series, 3. High Technology-Vol. 31

  5. Subirana JA (1992) FEBS 2: 105–107

    Google Scholar 

  6. Thomas TJ, Kulkarni GD, Greenfield NJ, Shirahata A & Thomas T (1996) Biochemical Journal 319: 591–599

    PubMed  Google Scholar 

  7. Manning GS (1978) Quarterly Review of Biophysics 11: 179–246

    Google Scholar 

  8. Belmont AS & Nicolini C (1981) Journal of Theoretical Biology 90: 1698–1705

    Google Scholar 

  9. Manning GS (1985) Cell Biophysics 7: 57–89

    PubMed  Google Scholar 

  10. Manning GS (1989) J. Biomol. Struct. Dyn. 7: 41–61

    PubMed  Google Scholar 

  11. Langmore JP & Paulson JR (1983) J. Cell. Biol. 96: 1120–1131

    PubMed  Google Scholar 

  12. Widom J (1986) Journal of Molecular Biology 190: 411–424

    PubMed  Google Scholar 

  13. Bordas J, Perez Grau L, Koch MHJ, Vega MC, Sayers Z & Nave C (1986) Eur. Biophys. J. 13: 175–185

    PubMed  Google Scholar 

  14. Williams SP & Langmore JP (1991) Biophys. J. 59: 606–618

    PubMed  Google Scholar 

  15. Fujiiwara S (1992) Biophyscal Chemistry, 43: 81–87

    Google Scholar 

  16. Maccioni E, Vergani L, Dembo A, Mascetti G & Nicolini C (1997) Mol. Biol. Rep. (in press)

  17. Finch JT & Klug A (1976) Proc. Nat. Acad. Sci. USA 73: 1897–1901

    PubMed  Google Scholar 

  18. Thoma F, Koller T & Klug A (1979) J. Cell Biol. 83: 403–427

    PubMed  Google Scholar 

  19. Woodcock CL, Frado LL & Rattner JB (1984) J. Cell Biol. 99: 42–52

    PubMed  Google Scholar 

  20. Williams SP, Athey BD, Muglia LJ, Scappe RS, Glough AH & Langmore JP (1986) Bioph. J. 49: 233–248

    Google Scholar 

  21. McGhee JD, Rau DC, Charney E & Felsenfeld G (1980) Cell 22: 87–96

    PubMed  Google Scholar 

  22. Dimitrov SI, Smirnov IV & Makarov V (1988) J. Biomol. Struct. Dyn. 2: 1135–1148

    Google Scholar 

  23. Vergani L, Gavazzo P, Mascetti G & Nicolini C (1994) Biochemistry 33: 6578–6585

    PubMed  Google Scholar 

  24. Butler PJ & Thomas O (1980) J. Mol. Biol. 140: 505–529

    PubMed  Google Scholar 

  25. Thomas JO, Rees C, Butler PJ (1986) Eur. J. Biochem. 154: 343–348

    PubMed  Google Scholar 

  26. Koch MHJ, Vega MC, Sayers Z & Michon AM (1987) Eur. Biophys. J. 15: 133–140

    PubMed  Google Scholar 

  27. Fritzsche W, Scahper A & Jovin TM (1994) Chromosoma 103: 231–236

    PubMed  Google Scholar 

  28. Fletcher TM, Serwer P & Hansen JC (1994) Biochemistry 33: 10859–10863

    PubMed  Google Scholar 

  29. Koch MHJ, Sayers Z, Vega MC & Michon AM, (1987) Eur. Biophys. J. 15: 133–140

    PubMed  Google Scholar 

  30. Nicolini C, Vergani L, Diaspro A & Scelza P (1988) Biochem. Biophys. Res. Comm. 155(3) 1396–1403

    PubMed  Google Scholar 

  31. Giannasca PJ, Horowitz RA & Woodcock CL (1993) J. Cell Sci. 105: 551–561

    PubMed  Google Scholar 

  32. Woodcock CL (1994) J. Cell Biol., 125: 11–19

    PubMed  Google Scholar 

  33. Woodcock CL, Grigoryev SA, Horowitz RA & Whitaker N (1993) Proc. Natl. Acad. Sci. USA 90: 9021–9025

    PubMed  Google Scholar 

  34. Belmont AS, Braunfeld MB, Sedat JW & Agard DA (1989) Chromosoma 98: 129–143

    PubMed  Google Scholar 

  35. Myc A, Traganos F, Lara J, Melamed MR & Darzynkiewicz Z (1992) Cytometry 13: 389–394

    PubMed  Google Scholar 

  36. Belmont A & Bruce K (1994) J. Cell Biol. 127(2) 287–302

    PubMed  Google Scholar 

  37. Szabo′ C, Boldog F & Wikonka N (1990) Biochem. Biophys. Res. Comm. 169(2) 706–712

    PubMed  Google Scholar 

  38. Touchette NA & Cole RD (1985) Proc. Natl. Acad. Sci. USA 82: 2642–2645

    PubMed  Google Scholar 

  39. Nicolini C, Trefiletti V, Cavazza B, Cuniberti C, Patrone E, Carlo P & Brambilla G (1983) Science 219: 176

    Google Scholar 

  40. Haussinger D (1996) Biochemical Journal 313: 697–710

    PubMed  Google Scholar 

  41. Nicolini C, Diaspro A, Vergani L & Cittadini G (1988) Internat. J. Biol. Macrom. 10: 137–144

    Google Scholar 

  42. Vergani L, Gavazzo P, Mascetti G & Nicolini C (1997) Termochimica Acta 294: 193–204

    Google Scholar 

  43. Nicolini C, Vergani L, Diaspro A & Di Maria E (1989) Termochimica Acta 152: 307–327

    Google Scholar 

  44. Gavazzo P, Vergani L, Mascetti G & Nicolini C (1997) J. Cellular Biochem. 64: 446–475

    Google Scholar 

  45. Balbi C, Abelmoschi ML, Gogioso L, Parodi S, Barboro P, Cavazza B & Patrone E (1989) Biochemistry 28: 322

    Google Scholar 

  46. Russo I, Barboro PI, Alberti I, Parodi S, Balbi C, Allera C, Lazzarini G & Patrone E (1995) Biochemistry 34: 301–311

    PubMed  Google Scholar 

  47. Mascetti G, Vergani L, Diaspro A, Carrara SI, Radicchi G & Nicolini C (1996) Cytometry 23: 110–119

    PubMed  Google Scholar 

  48. Hiraoka Y, Sedat JW & Agard DA (1987) Science 238: 36–41

    Google Scholar 

  49. Mascetti G, Carrara S, Vergani L & Nicolini C (1997) submitted to J. Cell Biol.

  50. Nicolini C, Mascetti G & Carrara S (1997) Mol. Biol. Rep. (in press)

  51. Young IT, Verbeek PW & Mayall BH (1986) Cytometry 7: 467–474

    PubMed  Google Scholar 

  52. Vergani L, Gavazzo P, Facci P, Diaspro A, Mascetti G, Arena N, Gaspa L & Nicolini C (1992) J. Cellular Biochem. 50: 201–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergani, L., Mascetti, G. & Nicolini, C. Effects of polyamines on higher-order folding of in situ chromatin. Mol Biol Rep 25, 237–244 (1998). https://doi.org/10.1023/A:1006937212430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006937212430

Keywords

Navigation