Skip to main content
Log in

Expression levels of heat shock factors are not functionally coupled to the rate of expression of heat shock genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The expression patterns of two mammalian heat shock factors (HSFs) were analysed in cell systems known to reflect an altered heat shock response. For being able to discriminate between the two closely related factors HSF 1 and HSF 2, specific cDNA sequences were cloned and used to generate antisense RNAs as hybridization probes. In general, in various cell lines expression of the two heat shock factors was clearly different. These expression patterns of the HSF genes were not influenced by retinoic acid-induced differentiation of human NT2 and mouse F9 teratocarcinoma cells. Generally, HSF 2 expression was extremely low, whereas the significantly higher expression of HSF 1 revealed cell specific differences. The highest expression rates of both HSFs were observed in 293 cells. To examine whether these high levels are involved in the constitutive expression of heat shock genes in these cells, we analysed the binding pattern of 293 cell proteins to the heat shock elements (HSEs). As with other cells, HSE-binding activity in 293 cells was only observed after heat shock treatment. This points to an HSE-independent way for high level expression of heat shock genes in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morimoto RI, Tissières A & Georgopoulos C (1990) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  2. Zimarino V & Wu C (1987) Nature 327: 727–730

    Google Scholar 

  3. Kingston RE, Schuetz TJ & Larin Z (1987) Mol. Cell. Biol. 7: 1530–1534

    Google Scholar 

  4. Perisic O, Xiao H & Lis JT (1989) Cell 59: 797–806

    Google Scholar 

  5. Peteranderl R & Nelson HCM (1992) Biochemistry 31: 12272–12276

    Google Scholar 

  6. Scharf KD, Rose S, Zott W, Schöffl F & Nover L (1990) EMBO J. 9: 4495–4501

    Google Scholar 

  7. Rabindran SK, Giorgi G, Clos J & Wu C (1991) Proc. Natl. Acad. Sci. USA 88: 6906–6910

    Google Scholar 

  8. Schuetz TJ, Gallo GJ, Sheldon L, Tempst P & Kingston RE (1991) Proc. Natl. Acad. Sci. USA 88: 6911–6915

    Google Scholar 

  9. Sarge KD, Zimarino V, Holm K, Wu C & Morimoto RI (1991) Genes Dev. 5: 1902–1911

    Google Scholar 

  10. Nakai A & Morimoto RI (1993) Mol. Cell. Biol. 13: 1983–1997

    Google Scholar 

  11. Sarge KD, Murphy SP & Morimoto RI (1993) Mol. Cell. Biol. 13: 1392–1407

    Google Scholar 

  12. Sistonen L, Sarge KD, Phillips B, Abravaya K & Morimoto RI (1992) Mol. Cell. Biol. 12: 4104–4111

    Google Scholar 

  13. Murphy SP, Gorzowski JJ, Sarge KD & Phillips B (1994) Mol. Cell. Biol. 14: 5309–5317

    Google Scholar 

  14. Sarge KD, ParkSarge OK, Kirby JD, Mayo KE & Morimoto RI (1994) Biol. Reprod. 50: 1334–1343

    Google Scholar 

  15. Wittig S, Hensse S, Keitel C, Elsner C & Wittig B (1983) Dev. Biol. 96: 507–514

    Google Scholar 

  16. Bensaude O & Morange M (1983) EMBO J. 2: 173–177

    Google Scholar 

  17. Morange M, Diu A, Bensaude O & Babinet C (1984) Mol. Cell. Biol. 4: 730–735

    Google Scholar 

  18. Barnier JV, Bensaude O, Morange M & Babinet C (1987) Exp. Cell Res. 170: 186–194

    Google Scholar 

  19. Legagneux V, Mezger V, Quelard C, Barnier JV, Bensaude O & Morange M (1989) Differentiation 41: 42–48

    Google Scholar 

  20. Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli N & Fogh J (1984) Lab. Invest. 50: 147–162

    Google Scholar 

  21. Andrews PW (1984) Dev. Biol. 103: 285–293

    Google Scholar 

  22. Strickland S, Smith KK & Marotti KR (1980) Cell 21: 347–355

    Google Scholar 

  23. Sambrook J, Fritsch EF & Maniatis T, (1989) Molecular cloning – A laboratory manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  24. Ercolani L, Florence B, Denaro M & Alexander M (1988) J. Biol. Chem. 263: 15335–15341

    Google Scholar 

  25. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL & Goeddel DV (1983) Nature 301: 214–221

    Google Scholar 

  26. Chomczynski P & Sacchi N (1987) Anal. Biochem. 162: 156–159

    Google Scholar 

  27. Dignam JD, Lebovitz RM & Roeder RG (1983) Nucl. Acids Res. 11: 1475–1489

    Google Scholar 

  28. Hunt C & Morimoto RI (1985) Proc. Natl. Acad. Sci. USA 82: 6455–6459

    Google Scholar 

  29. Drabent B, Genthe A & Benecke BJ (1986) Nucl. Acids Res. 14: 8933–8948

    Google Scholar 

  30. Hickey E, Brandon S, Smale G, Lloyd D & Weber LA (1989) Mol. Cell. Biol. 9: 2615–2626

    Google Scholar 

  31. Walter T, Drabent B, Krebs H, Tomalak M, Heiss S & Benecke BJ (1989) Gene 83: 105–115

    Google Scholar 

  32. Nakai A, Satoh M, Hirayoshi K & Nagata K (1991) Biochem. Biophys. Res. Comm. 176: 59–64

    Google Scholar 

  33. Rickles RJ, Darrow AL & Strickland S (1988) J. Biol. Chem. 263: 1563–1569

    Google Scholar 

  34. Aiello L, Guilfoyle R, Huebner K & Weinman R (1979) Virology 94: 460–469

    Google Scholar 

  35. Kao HT & Nevins JR (1983) Mol. Cell. Biol. 3: 2058–2065

    Google Scholar 

  36. Simon MC, Kitchener K, Kao HT, Hickey E, Weber L, Voellmey R, Heintz N & Nevins JR (1987) Mol. Cell. Biol. 7: 2884–2890

    Google Scholar 

  37. Phillips B, Abravaya K & Morimoto RI (1991) J. Virol. 65: 5680–5692

    Google Scholar 

  38. Firenz MT, Farkas T, Dissing M, Kolding D & Zimarino V (1995) Nucl. Acids Res. 23: 467–474

    Google Scholar 

  39. Mosser DD, Kotzbauer PT, Sarge KD and Morimoto RI (1990) Proc. Natl. Acad. Sci. USA 87: 3748–3752

    Google Scholar 

  40. Mezger V, Bensaude O & Morange M (1989) Mol. Cell. Biol. 9: 3888–3896

    Google Scholar 

  41. Goodson ML & Sarge KD (1994) Biochem. Biophys. Res. Comm. 211: 943–94

    Google Scholar 

  42. Goodson ML, ParkSarge O.K. & Sarge KD (1995) Mol. Cell. Biol. 15: 5288–5293

    Google Scholar 

  43. Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI & Nagata K (1997) Mol. Cell. Biol. 17: 469–481

    Google Scholar 

  44. Simon MC, Fisch TM, Benecke BJ, Nevins JR & Heintz N (1988) Cell 52: 723–729

    Google Scholar 

  45. Williams GT, McClanahan TK & Morimoto RI (1989) Mol. Cell. Biol. 9: 2574–2587

    Google Scholar 

  46. Taylor ICA & Kingston RE (1990) Mol. Cell. Biol. 10: 176–183

    Google Scholar 

  47. Rabindran SK, Haroun RI, Clos J, Wisniewski, J & Wu C (1993) Science 259: 230–234

    Google Scholar 

  48. Lange P, Victor M & Benecke BJ (1997) Genes to Cells, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Victor, M., Benecke, BJ. Expression levels of heat shock factors are not functionally coupled to the rate of expression of heat shock genes. Mol Biol Rep 25, 135–141 (1998). https://doi.org/10.1023/A:1006801205904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006801205904

Navigation