Skip to main content
Log in

Identification of peptides that neutralize bacterial endotoxins using β-hairpin conformationally restricted libraries

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Bacterial endotoxins are the major mediator of septic shock; therefore, endotoxin-neutralizing molecules could have biomedicalapplications. The septic shock cascade relies in a series of molecular recognition processes. The large contact-surface described for the interacting macromolecules, in most cases, prevents the identification of small molecules that could modulate such recognition events. Here we report on a β-hairpin conformationally restricted combinatorial librarythat has been generated and screened towards the identification of new peptides that neutralize bacterial endotoxins. Starting with a de novo designed linear peptide that shows a β-hairpin structure population of around 30%, (Ramirez-Alvarado, M., Blanco, F. J. and Serrano, L. Nat. Struc. Biol., 7, 604–612 (1996)), we selected four positions tobuild up a combinatorial library of 204 sequences. Deconvolution of the library reduced such a sequence complexity to 8 defined sequences. The newly identified peptides have a biological activity equivalent to that reported for peptides derived from natural endotoxin-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dooley, C.T., Chung, N.N., Wilkes, B.C., Schiller, P.W., Bidlack, J.M., Pasternak, G.W. and Houghten, R.A., An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library, Science, 266 (1994) 2019–2022. (b) Blondelle, S.E., Houghten, R.A. and Pérez-Payá, E., Identification of inhibitors of melittin using nonsupport-bound combinatorial libraries, J. Biol. Chem., 271 (1996) 4093–4099. (c) Blondelle, S.E., Pérez-Payá, E. and Houghten, R.A., Synthetic combinatorial libraries: novel discovery strategy for the identification of antimicrobial agents, Antimicrob. Agents Chemother., 40 (1996) 1067–1071.

    Google Scholar 

  2. West, M.W., Wang, W., Patterson, J., Mancias, J.D., Beasley, J.R. and Hecht, M.H., De novo amyloid proteins from designed combinatorial libraries, Proc. Natl. Acad. Sci. USA, 96 (1999) 11211–11216. (b) Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J. and Plückthun, A., Tailoring in vitro evolution for protein affinity or stability, Proc. Natl. Acad. Sci. USA, 98 (2001) 75–80.

    Google Scholar 

  3. Blondelle, S.E., Takahashi, E., Houghten, R.A. and Pérez-Payá, E., Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries, Biochem. J., 313 (1996) 141–147. (b) Becker, J.A., Wallace, A., Garzon, A., Ingallinella, P., Bianchi, E., Cortese, R., Simonin, F., Kieffer, B.L. and Pessi, A., Ligands for kappa-opioid and ORL1 receptors identified from a conformationally constrained peptide combinatorial library, J. Biol. Chem., 274 (1999) 27513–27522.

    Google Scholar 

  4. Pérez-Payá, E., Houghten, R.A. and Blondelle, S.E., Functionalized protein-like structures from conformationally defined synthetic combinatorial libraries, J. Biol. Chem., 271 (1996) 4120–4126.

    Google Scholar 

  5. Barbato, G., Cicero, D.O., Bianchi, E., Pessi, A. and Bazzo, R., Hight-resolution solution structure of two members of a conformationally homogeneous combinatorial peptide library based on the classical zinc-finger motif, J. Biomol. NMR, 1 (1996) 36-48. (b) Blondelle, S.E., Esteve, V., Celda, B., Pastor, M.T. and Pérez-Payá, E., Influence of the hydrophilic face on the folding ability and stability of α-helix bundles: relevance to the peptide catalytic activity, J. Peptide Res., 56 (2000) 121–131.

    Google Scholar 

  6. Ulevitch, R.J. and Tobias, P.S., Recognition of gramnegative bacteria and endotoxin by the innate immune system, Curr. Opin. Immunol., 11 (1999) 19–22. (b) Parillo J.E., Pathogenic mechanisms of septic shock, N. Engl. J. Med., 328 (1993) 1471–1477.

    Google Scholar 

  7. Scott, M.G., Vreugdenhil A.C., Buurman W.A., Hancock, R.E. and Gold M.R., Cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein, J. Immunol., 164 (2000) 549–553.

    Google Scholar 

  8. Schumann, R.R. and Latz, E., Lipopolysaccharide-binding protein, in CD14 in the Inflammatory Response. Jack, R.S. ed. Chem Immunol. Basel, Karge. 74 (2000) 42–60.

    Google Scholar 

  9. Beamer, L.J., Carroll, S.F. and Eisenberg, D., Crystal structure of human BPI and two bound phospholipids at 2.4 Angstrom resolution, Science, 276 (1997) 1861–1864.

    Google Scholar 

  10. Lamping, N., Hoess, A., Yu, B., Park, T.C., Kirschning, C.J., Pfeil, D., Reuter, D., Wright, S.D., Herrmann, F. and Schumann, R.R., Effects of site directed mutagenesis of basic residus (Arg 94, Lys 95, Lys 99 ) of lipopolysaccharide (LPS) binding protein on binding and transfer of LPS and subsequent immune cell activation, J. Immunol., 157 (1996) 4648–4656.

    Google Scholar 

  11. Ramirez-Alvarado, M., Blanco, F.J. and Serrano, L., De novo design and structural analysis of a model beta-hairpin peptide system, Nat. Struct. Biol., 7 (1996) 604–12.

    Google Scholar 

  12. Houghten, R.A., General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids, Proc. Natl. Acad. Sci. USA, 85 (1985) 5131–5135. (b) Fields, G.B. and Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonil amino acids, Int. J. Pept. Protein Res., 35 (1990) 161–214.

    Google Scholar 

  13. López-García, B., González-Candelas, L., Pérez-Payá, E. and Marcos, J., Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits, Mol. Plant-Microbe Interact., 13 (2000) 837–846.

    Google Scholar 

  14. Pastor, M.T., De la Paz, M., Lacroix, E., Serrano, L. and Pérez-Payá, E., Combinatorial approaches: a new tool to search for highly structured β-hairpin peptides, Proc. Natl. Acad. Sci. USA, 99 (2002) 614–619.

    Google Scholar 

  15. Ried, C., Wahl, C., Miethke, T., Wellnhofer, G., Landgraf, C., Schneider-Mergener, J. and Hoess, A., High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of Recombinant Limulus Antilipopolysaccharide Factor, J. Biol. Chem., 271 (1996) 28120–28127.

    Google Scholar 

  16. Morrison, D.C. and Jacobs, D.M., Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides, Immunochemistry, 10 (1976) 813–818.

    Google Scholar 

  17. Rietschel, E.T., Brade, H., Brade, L., Kaca, W., Kawahara, K., Linder, B., Luderitz, T., Tomita, T., Schade, U. and Seydel, U., Newer aspects of the chemical structure and biological activity of bacterial endotoxins, Prog. Clinic. Biol. Res., 189 (1985) 31–51.

    Google Scholar 

  18. Ulevitch, R.J. and Tobias, P.S., Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin, Ann. Rev. Immunol., 13 (1995) 437–457.

    Google Scholar 

  19. Seydel, V., Schromm, A.B., Blunck, R. and Brandenburg, K., Chemical structure, molecular conformation and bioactivity of endotoxins, Chem. Immunol., 74 (2000) 5–24.

    Google Scholar 

  20. Berlin, E. and Sainz, E., Fluorescence polarization order parameters and phase transitions in lipids and lipoproteins, Biochim. Biophys. Acta, 794 (1984) 49–55. (b) Stubss, C.D., Kinosita, K., Munkonge, F., Quinn, P.J. and Ikegami, A., The dynamics of lipid motion in sarcoplasmic reticulum membranes determined by steady-state and time-resolved fluorescence measurements on 1,6-diphenyl-1,3,5-hexatriene molecules, Biochim. Biophys. Acta, 775 (1984) 374–380.

    Google Scholar 

  21. Buck, M., Trifluooethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins, Q Rev. Biophys., 31 (1998) 297–355.

    Google Scholar 

  22. Dankesreiter, S., Hoess, A., Schneider-Mergener, J., Wagner, H. and Miethke, T., Synthetic endotoxin-binding peptides block endotoxin-triggered TNF-α production by macrophages in vitro and in vivo and prevent endotoxin-mediated toxic shock, J. Immunol., 164 (2000) 4804-4811. (b) Vallespi, M.G., Glaria, L.A., Reyes, O., Garay, H.E., Ferrrero, J. and Araña, M.J., A Limulus antilipopolysaccharide factor-derived peptide exhibit a new immunological activity with potential applicability in infectious diseases, Clinical and diagnostic, 14 (2000) 669–675. (c) Soon Tan, N., Lon, M., Hoe Yau, Y., Kat William, P., Ho, B. and Ling Ding, J., Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides, FASEB J., 7 (2000) 1801–1813. (d) Hancokc, M. and Scott, G., The role of antimicrobial peptides in animal defenses, Proc. Natl. Acad. Sci. USA, 97 (2000) 8856–8861.

    Google Scholar 

  23. Lacroix, E., Kortemme, T., Lopez de la Paz, M. and Serrano, L., The design of linear peptides that fold as monomeric betasheet structures, Curr. Opin. Struct. Biol., 9 (1999) 487–493.

    Google Scholar 

  24. Yang, J.T., Wu, C.S. and Martinez, H.M., Calculation of protein conformation from circular dichroism, Methods Enzymol., 130 (1986) 208–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Pérez-Payá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Navarro, H., Mora, P., Pastor, M. et al. Identification of peptides that neutralize bacterial endotoxins using β-hairpin conformationally restricted libraries. Mol Divers 5, 117–126 (2000). https://doi.org/10.1023/A:1016207717213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016207717213

Navigation