Skip to main content
Log in

Analysis of Two Collinear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces Subjected to Anti-plane Shear

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by a new method for the impermeable crack face conditions. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deeg, W.E.F., The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids, Ph.D. thesis, Stanford University, 1980.

  2. Pak, Y.E., ‘Crack extension force in a piezoelectric materials’, ASME J. Appl. Mech. 57 (1990) 647–653.

    Google Scholar 

  3. Pak, Y.E., ‘Linear electro-elastic fracture mechanics of piezoelectric materials’, Int. J. Fract. 54 (1992) 79–100.

    Google Scholar 

  4. Sosa, H.A. and Pak, Y.E., ‘Three-dimensional eigenfunction analysis of a crack in a piezoelectric ceramics’, Int. J. Solids Struct. 26 (1990) 1–15.

    Google Scholar 

  5. Sosa, H., ‘Plane problems in piezoelectric media with defects’, Int. J. Solids Struct. 28 (1991) 491–505.

    Google Scholar 

  6. Sosa, H., ‘On the fracture mechanics of piezoelectric solids’, Int. J. Solids Struct. 29 (1992) 2613–2622.

    Google Scholar 

  7. Suo, Z., Kuo, C.-M., Barnett, D.M. and Willis, J.R., ‘Fracturemechanics for piezoelectric ceramics’, J. Mech. Phys. Solids 40 (1992) 739–765.

    Google Scholar 

  8. Gao, H., Zhang, T.Y. and Tong, P., ‘Local and global energy rates for an elastically yielded crack in piezoelectric ceramics’, J. Mech. Phys. Solids 45 (1997) 491–510.

    Google Scholar 

  9. Li, X.F., Fan, T.Y. and Wu, X.F., ‘A Moving mode-III crack at the interface between two dissimilar piezoelectric materials’, Int. J. Engng. Sci. 38 (2000) 1219–1234.

    Google Scholar 

  10. Chen, Z.T., Karihaloo, B.L. and Yu, S.W., ‘A Griffith crack moving along the interface of dissimilar piezoelectric materials’, Int. J. Fracture 91 (1998) 197–203.

    Google Scholar 

  11. Chen, Z.T. and Karihaloo, B.L., ‘Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact’, Int. J. Solids Struct. 36 (1999) 5125–5133.

    Google Scholar 

  12. Yu, S.W. and Chen, Z.T., ‘Transient response of a cracked infinite piezoelectric strip under anti-plane impact’, Fatigue Engng. Mater. Struct. 21 (1998) 1381–1388.

    Google Scholar 

  13. Sosa, H. and Khutoryansky, N., ‘Transient dynamic response of piezoelectric bodies subjected to internal electric impulses’, Int. J. Solids Struct. 36 (1999) 5467–5484.

    Google Scholar 

  14. Zhang, T.Y. and Hack, J.E., ‘Mode-III cracks in piezoelectric materials’, J. Appl. Phys. 71 (1992) 5865–5870.

    Google Scholar 

  15. McMeeking, R.M., ‘On mechanical stress at cracks in dielectrics with application to dielectric breakdown’, J. Appl. Phys. 62 (1989) 3316–3122.

    Google Scholar 

  16. Suo, Z., ‘Models for break-down resistant dielectric and ferroelectric ceramics’, J. Mech. Phys. Solids 41 (1993) 1158–1176.

    Google Scholar 

  17. Dunn, M.L., ‘The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids’, Engng Fract. Mech. 48 (1994) 38–94.

    Google Scholar 

  18. Zhang, T.Y. and Tong, P., ‘Fracture mechanics for a mode III crack in a piezoelectric material’, Int. J. Solids Struct. 33 (1996) 343–359.

    Google Scholar 

  19. Sosa, H. and Khutoryansky, N., ‘New developments concerning piezoelectric materials with defects’, Int. J. Solids Struct. 33(23), (1996) 3399–3414.

    Google Scholar 

  20. Tauchert, T.R., ‘Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading’, J. Thermal Stresses 19 (1996) 287–298.

    Google Scholar 

  21. Lee, J.S. and Jiang, L.Z., ‘Exact electro-elastic analysis of piezoelectric laminate via state space approach’, Int. J. Solids Struct. 33 (1996) 977–989.

    Google Scholar 

  22. Batra, R.C. and Liang, X.Q., ‘The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators’, Comput. Struct. 63 (1997) 203–215.

    Google Scholar 

  23. Heyliger, P., ‘Exact solutions for simply supported laminated piezoelectric plates’, ASME J. Appl. Mech. 64 (1997) 299–311.

    Google Scholar 

  24. Shindo, Y., Domon, W. and Narita, F., ‘Dynamic bending of a symmetric piezoelectric laminated plate with a through crack’, Theor. Appl. Fract. Mech. 28 (1998) 175–186.

    Google Scholar 

  25. Narita, K., Shindo, Y. and Watanabe, K., ‘Anti-plane shear crack in a piezoelectric layered to dissimilar half spaces’, JSME Int. J., Series A 42 (1999) 66–72.

    Google Scholar 

  26. Morse, P.M. and Feshbach, H., Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York, 1958, pp. 925–937.

    Google Scholar 

  27. Wang, B., ‘Three dimensional analysis of a flat elliptical crack in a piezoelectric materials’, Int. J. Engng. Sci. 30(6) (1992) 781–791.

    Google Scholar 

  28. ark, S.B. and Sun, C.T., ‘Effect of electric field on fracture of piezoelectric ceramics’, Int. J. Fract. 70 (1995) 203–216.

    Google Scholar 

  29. Han, Xue-Li and Wang, Tzuchiang, ‘Interacting multiple cracks in piezoelectric materials’, Int. J. Solids Struct. 36 (1999) 4183–4202.

    Google Scholar 

  30. Narita, K. and Shindo, Y., ‘Anti-plane shear crack growth rate of piezoelectric ceramic body with finite width’, Theor. Appl. Fract. Mech. 30 (1998) 127–132.

    Google Scholar 

  31. Gradshteyn, I.S. and Ryzhik, I.M., Table of Integral, Series and Products, Academic Press, New York, 1980, pp. 1025–1031.

    Google Scholar 

  32. Erdelyi, A. (ed), Tables of Integral Transforms, McGraw-Hill, New York, 1954, Vol. 1, pp. 101–128.

    Google Scholar 

  33. Amemiya, A. and Taguchi, T., Numerical Analysis and Fortran, Maruzen, Tokyo, 1969, pp. 346–372.

    Google Scholar 

  34. Itou, S., ‘Three dimensional waves propagation in a cracked elastic solid’, ASME J. Appl. Mech. 45 (1978) 807–811.

    Google Scholar 

  35. Zhou, Z.G., Bai, Y.Y. and Zhang, X.W., ‘Two collinear Griffith cracks subjected to uniform tension in infinitely long strip’, Int. J. Solids Struct. 36 (1999a) 5597–5609.

    Google Scholar 

  36. Zhou, Z.G., Han, J.C. and Du, S.Y., ‘Investigation of a Griffith crack subject to anti-plane shear by using the non-local theory’, Int. J. Solids Struct. 36 (1999b) 3891–3901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, ZG., Chen, JY. & Wang, B. Analysis of Two Collinear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces Subjected to Anti-plane Shear. Meccanica 35, 443–456 (2000). https://doi.org/10.1023/A:1010351615603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010351615603

Navigation