Skip to main content
Log in

Perron–Frobenius Theory and Symmetry of Solutions to Nonlinear PDE's

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We suggest a simple but general method of establishing symmetry properties of stable solutions of nonlinear elliptic equations. The method relies on characterization of symmetry breaking with a help of zero modes and on a generalization of the Perron–Frobenius theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, S. L. and Piran, T.: Rev. Modern Phys. 56 (1984), 1.

    Google Scholar 

  2. Atkinson, C. and Reuter, G. E. H.: Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc. 80 (1976), 315–330.

    Google Scholar 

  3. Blumenfeld, R. and Bergman, D.J.: Physica A 157 (1989), 428.

    Google Scholar 

  4. Bekenstein, J. and Milgrom, M.: Astrophys. J. 286 (1984), 7.

    Google Scholar 

  5. Berestycki, H., Nirenberg, L. and Varadhan. S. R. S.: The principal eigenvalue and maximum principle forsecond-order elliptic operators on general domains, Comm. Pure Appl. Math. 47 (1994), 47–92.

    Google Scholar 

  6. Chanillo, S. and Kiessling, M.: Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), 217–238.

    Google Scholar 

  7. Diekmann, O. and Kaper, H. G.: On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal. 2 (1978) 721–737.

    Google Scholar 

  8. Gidas, B., Ni, W.-M. and Nirenberg, L.: Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

    Google Scholar 

  9. Glimm, J. and Jaffe, A.: The λ(ϕ4) quantum field theory without cut-offs: The field operators and the approximate vacuum, Ann. of Math 91 (1970), 362–401.

    Google Scholar 

  10. Li, C.-M.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Practical Differential Equations 16 (1991), 585–615.

    Google Scholar 

  11. Li, Y. and Ni, W. M.: On the existence and symmetry properties of finite total mass solutions of the Matukama equation, the Eddington equation, and their generalizations, Arch. Rat. Mech. Anal. 108 (1989), 175–194.

    Google Scholar 

  12. Li, Y. and Ni, W. M.: On the asymptotic behaviour and radial symmetry of positive solutions of semilinear elliptic equations in ℝn, I, Arch. Rat.Mech. Anal. 118 (1992), 195–222.

    Google Scholar 

  13. Li, Y. and Ni, W. M.: On the asymptotic behaviour and radial symmetry of positive solutions of semilinear elliptic equations in ℝn, II, Arch. Rat. Mech. Anal. 118 (1992), 223–243.

    Google Scholar 

  14. Lieb, E. H. and Loss, M.: Analysis, Amer. Math. Soc., Providence, 1997.

  15. Milgrom, M.: Astrophys. J. 302 (1986), 617.

    Google Scholar 

  16. Nussbaum, R. D. and Pinchover, Y.: On variational principles for the generalized principal eigenvalue of second order elliptic operators andsome applications, J. Anal. Math. 59 (1992), 161–177.

    Google Scholar 

  17. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247–258.

    Google Scholar 

  18. Ovchinnikov, Yu N. and Sigal, I. M.: Ginzburg-Landau equation I: Static vortices, In: P. Greiner et al. (eds), PDEs and Their Applications, CRM Proc. Lecture Notes 12, Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  19. Protter, M. H. and Weinberger, H. F.: Maximum Principles in Differential Equations, Springer, New York, 1984.

    Google Scholar 

  20. Zeidler, E.: Nonlinear Functional Analysis and its Applications I, Springer, New York, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigal, I.M. Perron–Frobenius Theory and Symmetry of Solutions to Nonlinear PDE's. Letters in Mathematical Physics 53, 313–320 (2000). https://doi.org/10.1023/A:1007622208894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007622208894

Navigation