Skip to main content
Log in

Accretion, structure and hydrology of intermediate spreading-rate oceanic crust from drillhole experiments and seafloor observations

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Downhole measurements recorded in the context of the Ocean Drilling Program in Hole 504B, the deepest hole drilled yet into the oceanic crust, are analyzed in terms of accretion processes of the upper oceanic crust at intermediate spreading-rate. The upper part of the crust is found to support the non steady-state models of crustal accretion developed from seafloor observations (Kappel and Ryan, 1986; Gente, 1987). The continuous and vertical nature of borehole measurements provides stratigraphic and structural data that cannot be obtained solely from seafloor studies and, in turn, these models define a framework to analyze the structural, hydrological, and mineralogical observations made in the hole over the past decade.

Due to the observed zonation with depth of alteration processes, and its relation to lava morphologies, the 650-m-thick effusive section penetrated in Hole 504B is postulated to be emplaced as the result of two main volcanic sequences. Massive lava flows are interpreted as corresponding to the onset of these sequences emplaced on the floor of the axial graben. The underlying lava made of structures with large porosity values and numerous cm-scale fractures is thus necessarily accreted at the end of the previous volcanic episode. On top of such high heterogeneous and porous intervals, the thick lava flows constitute crustal permeability barriers, thereby constraining the circulation of hydrothermal fluids.

Accreted in the near vicinity of the magma chamber, the lower section is that exposed to the most intense hydrothermal circulation (such as black smokers activity). Once capped by a massive flow at the onset of the second volcanic phase, the lower interval is hydrologically separated from ocean-waters. A reducing environment develops then below it resulting, for example, in the precipitation of sulfides. Today, whereas the interval corresponding to the first volcanic episode is sealed by alteration minerals, the second-one is still open to fluid circulation in its upper section. Thus, upper part of the volcanic edifice is potentially never exposed to fluids reaching deep into the crust, while the lower one is near the ridge axis.

Considering that most of the extrusives are emplaced within a narrow volcanic zone, the first unit extruded for a given vertical cross-section is necessarily emplaced at the ridge-axis. In Hole 504B, the 250-m-thickTransition Zone from dikes to extrusives is interpreted as the relict massive unit flooding the axial graben at the onset of the first volcanic sequence, and later ruptured by numerous dikes. Further from the axis, the same massive unit constitutes a potential permeability cap for vertical crustal sections accreted earlier. Also, the upper 50 meters of the basement might be considered as the far-end expression of massive outpours extruded near the ridge-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamides, N. G., 1987, Diverse Modes of Occurrence of Cyprus Sulfide Deposits and Comparison with Recent Analogues,Geol. Surv. Canada, paper 85-29, 153–168.

    Google Scholar 

  • Alt, J. C., Laverne, C., and Muehlenbachs, K., 1985, Alteration of the Upper Oceanic Crust: Minerology and Processes in DSDP Hole 504B, Leg 83,Init. Repts. Deep Sea Drill. Proj. 83, 217–248.

    Google Scholar 

  • Alt, J. C., Honnorez, J., Laverne, C., and Emmermann, R., 1986a, Hydrothermal Alteration of a 1-km Section through the Upper Oceanic Crust, DSDP Hole 504B: the Mineralogy, Chemistry and Evolution of Seawater-Basalt Interactions,J. Geophys. Res. 91, 309–335.

    Google Scholar 

  • Alt, J. C., Muehlenbachs, K., and Honnorez, J., 1986b, An Oxygen Isotopic Profile through the Upper Kilometer of the Oceanic Crust, DSDP Hole 504B,Earth Planet. Sci. Lett. 80, 217–229.

    Google Scholar 

  • Anderson, R. N., and Noltimier, H. C., 1973, A Model for the Horst and Graben Structure of Mid-Ocean Ridge Crests Based Upon Spreading Velocity and Basalt Delivery to the Oceanic Crust,Geophys. J.R. Astron. Soc. 34, 137–147.

    Google Scholar 

  • Anderson, R. N., Langseth, M. G., and Sclater, J. G., 1977, The Mechanisms of Heat Transfer through the Floor of the Indian Ocean,J. Geophys. Res. 82, 3391–3409.

    Google Scholar 

  • Anderson, R. N., and Zoback, M. D., 1982, Permeability, Underpressures, and Convection in the Oceanic Crust near the Costa Rica Rift,J. Geophys. Res. 87, 2860–2868.

    Google Scholar 

  • Anderson, R. N., Honnorez, J., Becker, K.et al., 1985a,Init. Repts. Deep Sea Drill. Proj. 83.

  • Anderson, R. N., O'Malley, H., and Newmark, R. L., 1985b, Use of Geophysical Logs for Quantitative Determination of Fracturing, Alteration, and Lithostratigraphy in the Upper Oceanic Crust, DSDP Holes 504B and 556,Init. Repts. Deep Sea Drill. Proj. 83, 443–478.

    Google Scholar 

  • Anderson, R. N., Zoback, M. D., Hickman, S. H., and Newmark, R. K., 1985c, Permeability versus Depth in the Upper Oceanic Crust:in situ Measurements in DSDP Hole 504B, Eastern Equatorial Pacific,J. Geophys. Res. 90, 3659–3669.

    Google Scholar 

  • Anderson, R. N., Malpas, J., and Alt, J. C., 1989, Integrated Mass Fluxes from Geochemical Well-Logs in Hole 504B, Costa Rica Rift, Eastern Equatorial Pacific, in: Becker, K., and Sakai, H., (eds.),Proceedings of ODP, Scientific Results 111, 147–160, Ocean Drilling Program, College Station, Texas.

    Google Scholar 

  • Archie, G. E., 1942, The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics,J. Pet. Technol. 5, 1–8.

    Google Scholar 

  • Atwater, T. M., and Mudie, J. D., 1968. Block Faulting on the Gorda Rise,Science 159, 729–731.

    Google Scholar 

  • Atwater, T. M., and Mudie, J. D., 1973, Detailed Near-Bottom Geophysical Study of the Gorda Rise,J. Geophys. Res. 78, 8665–8686.

    Google Scholar 

  • Autio, L. K., and Rhodes, J. M., 1983, Costa Rica Rift Zone Basalts: Geochemical and Experimental Data from a Possible Example of Multistage Melting,Initial Repts. Deep Sea Drill. Proj. 69, 729–745.

    Google Scholar 

  • Ballard, R. D., Francheteau, J., Juteau, T., Rangin, C., and Normark, W., 1981, The East Pacific Rise at 21° N: the Volcanic, Tectonic and Hydrothermal Processes of the Central Axis,Earth Planet. Sci. Lett. 55, 1–10.

    Google Scholar 

  • Barone, A. M., 1989, Morphotectonic Evolution of Subsea Volcanoes near the Boundary of Separating Plates. Examples from Lifting and Spreading Stages, PhD Thesis, Columbia University, New York.

    Google Scholar 

  • Barrett, T. J., 1983, Strontium and Lead Isotope Composition of Some Basalts from DSDP Hole 504B, Costa Rica Rift, Leg 69 and 70,Initial Repts. Deep Sea Drill. Proj. 69, 643–650.

    Google Scholar 

  • Barrett, T. J., and Friedrichsen, H., 1983, Oxygen and Hydrogen Isotope Composition of Some Basalts from DSDP Hole 504B, Costa Rica Rift, Leg 69–70,Initial Repts. Deep Sea Drill. Proj. 69, 637–642.

    Google Scholar 

  • Becker, K., 1985, Large-Scale Electrical Resistivity and Bulk Porosity of the Oceanic Crust, DSDP Hole 504B, Costa Rica Rift,Initial Repts. Deep Sea Drill. Proj. 83, 419–427.

    Google Scholar 

  • Becker, K., Sakai, H.et al., 1989, Drilling Deep into Young Oceanic Crust, Hole 504B, Costa Rica Rift,Rev. of Geophys. 27, 79–102.

    Google Scholar 

  • Bonatti, E., and Harrison, C. G. A., 1988, Eruption Styles of Basalt in Oceanic Spreading Ridges and Seamounts: Effect of Magma Temperature and Viscosity,J. Geophys. Res. 93, 2967–2980.

    Google Scholar 

  • Cann, J. R., 1968, Geological Processes at Mid-Ocean Ridges Crests,Geophys. J.R. Astron. Soc. 15, 331–341.

    Google Scholar 

  • Cann, J. R., 1974, A model for oceanic crust developed, Geophys. J. R. Astron. Soc.,39, 169–187.

    Google Scholar 

  • Cann, J. R., Langseth, M. G., Honnorez, J., Von Herzen, R. P., White, S. M.et al., 1983,Initial Repts. Deep Sea Drill. Proj. 69.

  • Choukroune, P., Francheteau, J., and Hekinian, R., 1984, Tectonics of the East Pacific Rise near 12°50′ N: a Submersible Study,Earth Planet. Sci. Lett. 68, 115–127.

    Google Scholar 

  • Christensen, N. I., and Salisbury, M. H., 1975, Structure and Constitution of the Lower Oceanic Crust,Rev. Geophys. and Space Phys. 13, 57–86.

    Google Scholar 

  • Collette, B. J., Verhoof, J., and Mulder, A. F. J. de, 1980, Gravity and a Model of the Median Valley,J. Geophys. Res. 47, 91–98.

    Google Scholar 

  • Costa Rica Rift United Scientific Team (CRRUST), 1972, Geothermal Regimes of the Costa Rica Rift, East Pacific, Investigated by Drilling, DSDP-IPOD Legs 68, 69, and 70,Geol. Soc. Am. Bull. 93, 862–887.

    Google Scholar 

  • Cox, C. S., 1971, The Electrical Conductivity of the Oceanic Lithosphere. In The Structure and Physical Properties of the Earth's Crust,Geophys. Mono. Ser. 14, American Geophysical Union, Washington, 227–234.

    Google Scholar 

  • Cox, C. S., Constable, S. C., Chave, A. D., and Webb, S. C., 1986, Controlled-Source Electromagnetic Sounding of the Oceanic Lithosphere, Nature320, 53–54.

    Google Scholar 

  • Crane, K., 1978, Structure and Tectonics of the Galapagos Inner Rift, 86°10′ N,J. Geology 86, 715–730.

    Google Scholar 

  • CYAMEX Scientific Team: Francheteau, J., Needham, H. D., Choukroune, P., Juteau, J., Seguret, M., Ballard, R. D., Fox, P. J., Normark, W. R., Carranza, A., Cordoba, D., Guerrero, J., and Rangin, C., 1981, First Manned Submersible Dives on the East Pacific Rise at 21° N,Mar. Geophys. Res. 4, 345–379.

    Google Scholar 

  • Daignières, M., Courtillot, V., Bayer, R., and Tapponnier, P., 1975, A Model for the Evolution of the Axial Zone of Mid-Ocean Ridges as Suggested by Icelandic Tectonics,Earth Planet. Sci. Lett. 26, 222–232.

    Google Scholar 

  • Davis, E. E., and Lister, C. R. B., 1977, Tectonics Structures on the Juan de Fuca Ridge,Geol. Soc. Amer. Bull. 88, 346–363.

    Google Scholar 

  • Deffeyes, K. S., 1970, The Axial Valley: A Steady-State Feature of the Terrain. In: Johnson, H., and Smith, B. L., (eds.),Megatectonics of Continents and Oceans, Rutgers U. Pr., New Brunswick, 194–222.

    Google Scholar 

  • Donnelly, T., Francheteau, J.,et al., 1979,Initial Repts. Deep Sea Drill. Proj. 51,52,53.

  • Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., and Grant, B., 1979, Ridge Crest Hydrothermal Activity and the Balances of the Major and Minor Elements in the Ocean,Earth and Planet. Sci. Lett. 46, 1–18.

    Google Scholar 

  • Edwards, M. H., 1991, The morphotectonic fabric of the East Pacific Rise: implications for fault generation and crustal accretion. PhD Thesis, Columbia Univ., New York.

    Google Scholar 

  • Ellis, D. V., 1987,Well logging for earth scientists, Elsevier, New York.

    Google Scholar 

  • Emerman, S. H., and Turcotte, D. L., 1984, The Mid-Ocean Ridge Axial Valley as a Steady-State Neck,Earth Planet. Sci. Lett. 71, 141–146.

    Google Scholar 

  • Emmermann, R., 1985, Basement Geochemistry, Hole 504B,Initial Repts. Deep Sea Drill. Proj. 83, 183–199.

    Google Scholar 

  • Fehn, U., Green, K. E., Von Herzen, R. P., and Cathles, L. M., 1983, Numerical Models for the Hydrothermal Field at the Galapagos Spreading Center,J. Geophys. Res. 88, 1033–1048.

    Google Scholar 

  • Francheteau, J., 1983, The Oceanic Crust,Scien. Am. 249, 114–129.

    Google Scholar 

  • Friedrichsen, H., 1985, Strontium, Oxygen and Hydrogen Isotopes Studies on Primary and Secondary Minerals in Basalts from the Leg 83 Section of DSDP Hole 504B, Costa Rica Rift,Initial Repts. Deep Sea Drill. Proj. 83, 289–296.

    Google Scholar 

  • Gable, R., Morin, R. H., and Becker, K., 1989, The Geothermal State of Hole 504B: ODP Leg 111 Overview, in: Becker, K., and Sakai, H., (eds.),Proceedings of ODP, Scientific Results 111, Ocean Drilling Program, College Station, Texas, 87–96.

    Google Scholar 

  • Gass, I. G., and Smewing, J. D., 1973, Intrusion, Extrusion, and metamorphism at Constructive Margins: Evidence from the Troodos Massif, Cyprus,Nature 242, 26–29.

    Google Scholar 

  • Gente, P., Auzende, J. M., Renard, V., Fouquet, Y., and Bideau, D., 1986, Detailed Geological Mapping by Submersible of the East Pacific Rise Axial Graben near 13° N,Earth Planet. Sci. Lett. 78, 224–236.

    Google Scholar 

  • Gente, P., 1987, Etude Morphostructurale Comparative des Dorsales Océaniques à Taux d'Expansion Variés, in:Thèse de Doctorat, Université de Bretagne Occidentale, Brest.

    Google Scholar 

  • Harrison, C. G. A., 1968, Formation of Magnetic Anomaly Patterns by Dyke Injection.J. Geophys. Res. 73, 2137.

    Google Scholar 

  • Harrison, C. G. A., 1974, Tectonics of Mid-Ocean Ridges,Tectonophysics 22, 301–310.

    Google Scholar 

  • Harrison, C. G. A., and Stieltjes, L., 1977, Faulting within the Median Valley,Tectonophysics 38, 137–144.

    Google Scholar 

  • Haymon, R. M., and Koski, R. A., 1987, A 3-D Model of Along-Axis Hydrothermal Circulation, Discharge, and Mineralization in the Bayda Hydrothermal System, Northern Oman Ophiolite,EOS, Trans. Am. Geophys. Union68, 1545.

    Google Scholar 

  • Heezen, B. C., 1960, The Rift in the Ocean Floor,Scien. Am. 203, 98–110.

    Google Scholar 

  • Heezen, B. C., and Ewing, M., 1963, The Mid-Ocean Ridge, in: Hill, R. N. (ed.),The Sea, Wiley-Interscience, New York, 388–410.

    Google Scholar 

  • Hekinian, R., 1984, Undersea Volcanoes,Scien. Am. 251, 46–55.

    Google Scholar 

  • Hess, H. H., 1959, Nature of the Great Ocean Ridges. In: Sears, M. (ed.),International Oceanographic Congress preprints, Washington, D.C., American Association for the Advancement of Science, 33–34.

    Google Scholar 

  • Hess, H. H., 1965, Mid-Ocean Ridges and Tectonics of the Sea-Floor. In: Wittard, W. F., and Bradshaw, R., (eds.),Submarine Geology and Geophysics, Butterworths, London, 317–333.

    Google Scholar 

  • Hill, D. G., 1972, Laboratory Analysis of Electrical Anisotropy in Precambrian Rocks,Geophys. 37, 6.

    Google Scholar 

  • Hobart, M. A., Langseth, M. G., and Anderson, R. N., 1985, A Geophysical and Geothermal Survey on the South Flank of the Costa Rica Rift: Sites 504 and 505,Initial Repts. Deep Sea Drill. Proj. 83, 379–404.

    Google Scholar 

  • Honnorez, J., Laverne, C., Hubberten, H. W., Emmermann, R., and Muehlenbachs, K., 1983, Alteration Processes in Layer 2 Basalts from DSDP Hole 504B, Costa Rica Rift,Initial Repts. Deep Sea Drill. Proj. 69, 509–546.

    Google Scholar 

  • Houtz, R., and Ewing, J., 1976, Upper Crustal Structure as a Function of Plate Age,J. Geophys. Res. 81, 2490–2498.

    Google Scholar 

  • Hubberten, H. W., Emmermann, R., and Puchelt, H., 1983, Geochemistry of Basalts from Costa Rica Rift Sites 504 and 505 (DSDP Legs 69 and 70),Initial Repts. Deep Sea Drill. Proj. 69, 791–804.

    Google Scholar 

  • Hyndman, R. D., Von Herzen, R. P., Erickson, A. J., and Jolivet, J., 1976, Heat-Flow Measurements in Deep Crustal Holes on the Mid-Atlantic Ridge,J. Geophys. Res. 81, 4053–4060.

    Google Scholar 

  • Hyndman, R. D., and Salisbury, M. H., 1983, The Physical Nature of the Oceanic Crust on the Mid-Atlantic Ridge, DSDP Hole 395A,Initial Repts. Deep Sea Drill. Proj. 78B, 839–848.

    Google Scholar 

  • Kappel, E. S., and Ryan, W. B. F., 1986, Volcanic Episodicity and a Non-Steady State Rift Valley along Northeast Pacific Spreading Centers: Evidence from Sea MARC I,J. Geophys. Res. 91, 13925–13940.

    Google Scholar 

  • Keller, G. V., and Frischknecht, F. C., 1966,Electrical Methods in Geophysical Prospecting, Pergamon Press, Oxford.

    Google Scholar 

  • Kidd, R. G. W., 1977, A Model for the Process of Formation of the Upper Oceanic Crust,Geophys. J.R. Astron. Soc. 50, 149–183.

    Google Scholar 

  • Klein, E. M., and Langmuir, C. H., 1987, Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness,J. Geophys. Res. 92, 8089–8115.

    Google Scholar 

  • Klitgord, K. D. and Mudie, J. D., 1974, The Galapagos Spreading Center: a Near-Bottom Geophysical Survey,Geophys. J.R. Astron. Soc. 38, 563–586.

    Google Scholar 

  • Koide, H., and Bhattacharji, S., 1975, Mechanistic Interpretation of Rift Valley Formation,Science 189, 791–793.

    Google Scholar 

  • Kopietz, J., Becker, K., and Hamano, Y., 1989, Temperature Measurements at Site 395, ODP Leg 109. In: Bryan, W. B., and Juteau, T., (eds.),Proceedings of ODP, Scientific Results 109, Ocean Drilling Program, College Station, Texas, 197–203.

    Google Scholar 

  • Lachenbruch, A. H., 1973, A simple Mechanical Model for Oceanic Spreading Centers,J. Geophys. Res. 78, 3395–3417.

    Google Scholar 

  • Lachenbruch, A. H., 1976, Dynamics of a Passive Spreading Center,J. Geophys. Res. 81, 1883–1902.

    Google Scholar 

  • Langmuir, C. H., Bender, J. F., and Batiza, R., 1986, Petrologic and Tectonic Segmentation of the East Pacific Rise, 5°30′ N–14°30′N,Nature 322, 422–429.

    Google Scholar 

  • Laughton, A. S., and Searle, R. C., 1979, Tectonic Processes on Slow Spreading Ridges. In: Talwaniet al., (eds.),Deep drilling results in the Atlantic Ocean, American Geophysical Union, Washington, 15–32.

    Google Scholar 

  • Laverne, C., 1987, Les Altérations des Basaltes en Domaine Océanique. Minéralogie, Pétrologie et Géocshimie d'un Système Hydrothermal: le Puits 504B, Pacific Oriental, inThèse d'Etat, Marseille.

  • Lewis, B. R. T., 1979, Periodicities in Volcanism and Longitudinal Magma Flow on the East Pacific Rise at 23° N,Geophys. Res. Lett. 6, 753–756.

    Google Scholar 

  • Lister, C. R. B., 1972, On the Thermal Balance of Mid-Ocean Ridges,Geophys. J.R. Astron. Soc. 26, 515–535.

    Google Scholar 

  • Lister, C. R. B., 1974, On the Penetration of Water into Hot Rock,Geophys. J.R. Astron. Soc. 39, 465–509.

    Google Scholar 

  • Lonsdale, P., 1977, Deep-Tow Observations at the Mounds Abyssal Hydrothermal Field, Galapagos Rift,Earth Planet. Sci. Lett. 36, 92–110.

    Google Scholar 

  • Lonsdale, P., 1977, Structural Geomorphology of a Fast-Spreading Rise Crest: The East Pacific Rise near 3°25′ S,Mar. Geophys. Res. 3, 251–293.

    Google Scholar 

  • Lonsdale, R., and Klitgord, K. D., 1978, Structure and Tectonic History of the Eastern Panama Basin,Geol. Soc. Am. Bull. 89, 981–999.

    Google Scholar 

  • Macdonald, K. C., 1982, Mid-Ocean Ridges: Fine-Scale Tectonic, Volcanic and Hydrothermal Processes within the Plate Boundary Zone,Ann. Rev. Earth Planet. Sci. 10, 155–190.

    Google Scholar 

  • Macdonald, K. C., 1983, Crustal Processes at Spreading Centers,Rev. of Geophys. and Space Phys. 21, 1441–1454.

    Google Scholar 

  • Macdonald, K. C., and Luyendyk, B. P., 1977, Deep-tow studies of the structure of the Mid-Atlantic ridge crest near lat 37° N,Geol. Soc. Amer. Bull. 88, 621–636.

    Google Scholar 

  • Macdonald, K. C., and Atwater, T. M., 1978, Evolution of Rifted Ocean Ridges,Earth Planet. Sci. Lett. 39, 319–327.

    Google Scholar 

  • Macdonald, K. C., Miller, S. P., Luyendyk, B. P., Atwater, T. M., and Shure, L., 1983, Investigation of a Vine-Matthews Magnetic Lineation from a Submersible: The Source and Character of Marine Magnetics Anomalies,J. Geophys. Res. 88, 3403–3418.

    Google Scholar 

  • Macdonald, K. C., Sempere, J. C., and Fox, P. J., 1984, East Pacific Rise from Sisqueiros to Orozco Fracture Zones: Along-Strike Continuity of Axial Neovolcanic Zone, Structure and Evolution of Overlapping Spreading Centers,J. Geophys. Res. 89, 6049–6069.

    Google Scholar 

  • Macdonald, K. C., and Fox, P. J., 1988, The Axial Summit Graben and Cross-Sectional Shape of the East Pacific Rise as Indicator of Axial Magma Chambers and Recent Volcanic Eruptions,Earth Planet. Sci. Lett. 88, 119–131.

    Google Scholar 

  • Melson, W. G., and Rabinowitz, P. D., 1979,Initial Repts. Deep Sea Drill. Proj. 45.

  • Menard, H. W., 1960, The East Pacific Rise,Science 132, 1737–1746.

    Google Scholar 

  • Menard, H. W., 1967, Seafloor Spreading, Topography and the Second Layer,Science 158, 923–924.

    Google Scholar 

  • Moores, E. M., 1982, Origin and Emplacement of Ophiolites,Rev. Geophys. 20, 735–760.

    Google Scholar 

  • Moos, D., Pezard, P. A., and Lovell, M. A., 1990,In Situ Elastic Properties of Basalts from the Upper Oceanic Crust in DSDP and ODP Drillholes,J. Geophys. Res. 95, 9189–9208.

    Google Scholar 

  • Morton, J. L., Sleep, N. H., 1985, A Mid-Ocean Ridge Thermal Model: Constraints on the Volume of Axial Hydrothermal Heat Flux,J. Geophys. Res. 90, 11345–11353.

    Google Scholar 

  • Natland, J. H., Adamson, A. C., Laverne, C., Melson, W. G., and O'Hearn, T., 1983, A Compositionally nearly Steady-State Magma Chamber at the Costa Rica Rift: Evidence from Basalt Glass and Mineral Data, DSDP,Initial Repts. Deep Sea Drill. Proj. 69, 811–858.

    Google Scholar 

  • Needham, H. D., and Francheteau, J., 1974, Some Characteristics of the Rift Valley in the Atlantic Ocean near 36°48′North,Earth Planet. Sci. Lett. 22, 29–43.

    Google Scholar 

  • Nehlig, P., and Juteau, T., 1988, Flow Porosities, Permeabilities and Preliminary Data on Fluid Inclusions and Fossil Thermal Gradients in the Crustal Sequence of the Semail Ophiolite (Oman),Tectonophysics 151, 199–222.

    Google Scholar 

  • Nelson, K. D., 1981, A Simple Thermal-Mechanical Model for Mid-Ocean Ridge Topographic Variation,Geophys. J.R. Astron. Soc. 65, 19–30.

    Google Scholar 

  • Newmark, R. L., Anderson, R. N., Moos, D., and Zoback, M. D., 1985, Sonic and Ultrasonic Logging of Hole 504B and its Implications for the Structure, Porosity, and Stress Regime of the Upper 1 km of the Oceanic Crust,Initial Repts. Deep Sea Drill. Proj. 83, 479–510.

    Google Scholar 

  • Normark, W. R., 1976, Delineation of the Main Extrusion Zone of the East Pacific Rise at Latitude 21° N,Geology 4, 681–685.

    Google Scholar 

  • Olhoeft, G. R., 1981, Electrical Properties of Rocks. In Touloukian, Y. S., Judd, W. R., and Roy, R. F. (eds.),Physical Properties of Rocks and Minerals, McGraw-Hill, New York, 257–330.

    Google Scholar 

  • Palmasson, G., 1973, Kinematics and Heat Flow in a Volcanic Rift Zone, with Application to Iceland,Geophys. J.R. Astron. Soc. 33, 451–481.

    Google Scholar 

  • Parkhomenko, E. I., 1967,Electrical properties of rocks, G. V. Keller trans. & ed., Plenum, New York.

    Google Scholar 

  • Pezard, P. A., 1990, Electrical Properties of MORB, and Implications for the Structure of the Upper Oceanic Crust at DSDP Site 504,J. Geophys. Res. 95, 9237–9264.

    Google Scholar 

  • Pezard, P. A., and Anderson, R. N., 1989, Morphology and Alteration of the Upper Oceanic Crust fromin situ Electrical Experiments in DSDP Hole 504B, in Becker, K., and Sakai, H. (eds.),Proceedings of ODP, Scientific Results 111, Ocean Drilling Program, College Station, Texas, 133–146.

    Google Scholar 

  • Pezard, P. A., and Anderson, R. N., 1990,In situ Measurements of Electrical Resistivity, Formation Anisotropy, and Tectonic Context,Trans. SPWLA, Ann. Logging Symposium, 31st.

  • Piper, J. D. A., and Gibson, I. L., 1972, Stress Control of Processes at Extensional Plate margins,Nature Physical Science 238, 83–86.

    Google Scholar 

  • Rangin, C., and Francheteau, J., 1981, Fine Scale Morphological and Structural Analysis of the East Pacific Rise, 21° N (Rita Project),Oceanologica Acta, Colloque Géologie des Océans, Paris 1980, 15–24.

    Google Scholar 

  • Rea, D. K., 1975, Model for the Formation of Topographic Features of the East Pacific Rise Crest,Geology 3, 77–80.

    Google Scholar 

  • Rittmann, A., and Rittmann, L., 1976,Volcanoes, Putnam's Sons, New York, 29–33.

    Google Scholar 

  • Robinson, P. T., Lewis, B. R. T., Flower, M. F. J., Salisbury, M. H., and Schminke, H. U., 1973, Crustal Accretion in the Gulf of California: A Medium-Rate Spreading Axis,Initial Repts. Deep Sea Drill. Proj.,65, 739–752.

    Google Scholar 

  • Rosencrantz, E., 1983, The structure of sheeted dikes and associated rocks in the North Arm massif, Bay of Islands ophiolite complex, and the intrusive process at oceanic spreading centers. Can. J. Earth Sci.,20, 787–801.

    Google Scholar 

  • Salisbury, M. H., Donnelly, T. W., and Francheteau, J., 1980, Geophysical Logging in DSDP Hole 417D, in: Donnelly, T., Francheteau, J.,et al. (eds.),Initial Repts. Deep Sea Drill. Proj. 51, 52, 53, 705–713.

    Google Scholar 

  • Schlumberger, C., 1920,Etude sur la prospection électrique du sous-sol, Gauthiers-Villars, Paris, p. 40.

    Google Scholar 

  • Searle, R., 1984, Gloria Survey of the East Pacific Rise near 3.5° S: Tectonic and Volcanic Characteristics of a Fast Spreading Mid-Ocean Rise,Tectonophysics 101, 319–344.

    Google Scholar 

  • Shankland, T. J., and Waff, H. S., 1974, Conductivity in Fluid-Bearing Rocks,J. Geophys. Res. 79, 4863–4868.

    Google Scholar 

  • Sidgursson, H., and Sparks, S. R. J., 1978, Lateral Magma Flow within Rifted Icelandic Crust,Nature 274, 126–130.

    Google Scholar 

  • Sleep, N. H., 1969, Sensitivity of Heat Flow and Gravity to the Mechanism of Sea-Floor Spreading,J. Geophys. Res. 74, 542–549.

    Google Scholar 

  • Sleep, N. H., and Rosendahl, B. R., 1979, Topography and Tectonics of Mid-Oceanic Ridges Axes,J. Geophys. Res. 84, 6831–6839.

    Google Scholar 

  • Sleep, N. H., and Wolery, T. J., 1978, Thermal and Chemical Constraints on Venting of Hydrothermal Fluids at Mid-Ocean Ridges,J. Geophys. Res. 83, 5913–5922.

    Google Scholar 

  • Tapponnier, P., and Francheteau, J., 1978, Necking of the Lithosphere and the Mechanics of Slowly Accreting Plate Boundaries,J. Geophys. Res. 83, 3955–3970.

    Google Scholar 

  • Usselmann, T. M., and Hodge, D. S., 1978, Thermal Control of Low-Pressure Fractionation Processes,J. Volcanol. Geotherm. Res. 4, 265–281.

    Google Scholar 

  • van Andel, T. H., and Bowin, C. O., 1968, Mid-Atlantic Ridge between 22° and 23° North Latitude and the Tectonics of Mid-Ocean Ridges,J. Geophys. Res. 73, 1279–1298.

    Google Scholar 

  • Vera, E., 1989, The Structure of 0- to 0.2-M.Y.-Old Oceanic Crust at 9° N on the East Pacific Rise from Expanded Spread Profiles,PhD Thesis, Columbia University, New York.

    Google Scholar 

  • Vine, F. J., and Matthews, D. H., 1963, Magnetic Anomalies over Oceanic Ridges,Nature 199, 947–949.

    Google Scholar 

  • Whitmarsh, R. B., and Laughton, A. S., 1976, A Long-Range Sonar Study of the Mid-Atlantic Ridge Crest near 37° N (FAMOUS Area) and its Tectonic Implications,Deep Sea Research 23, 1005–1023.

    Google Scholar 

  • Williams, D. L., Von Herzen, R. P., Sclater, J. G., and Anderson, R. N., 1974, The Galapagos Spreading Centre: Lithospheric Cooling and Hydrothermal Circulation,Geophys. J.R. Astron. Soc. 38, 587–608.

    Google Scholar 

  • Williams, C. F., Narasimhan, T. N., Anderson, R. N., Zoback, M. D., and Becker, K., 1986, Convection in the Oceanic Crust: Simulation of Observations from DSDP Hole 504B, Costa Rica Rift,J. Geophys. Res. 91, 4877–4889.

    Google Scholar 

  • Wyllie, R. J., Gregory, A. R., and Gardner, G. H. F., 1958, An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media,Geophysics 23, 459–469.

    Google Scholar 

  • Young, P. D., and Cox, C. S., 1981, Electromagnetic Active Source Sounding near the East Pacific Rise,Geophys. Res. Lett. 8, 1043–1046.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezard, P.A., Anderson, R.N., Ryan, W.B.F. et al. Accretion, structure and hydrology of intermediate spreading-rate oceanic crust from drillhole experiments and seafloor observations. Mar Geophys Res 14, 93–123 (1992). https://doi.org/10.1007/BF01204282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01204282

Key words

Navigation