Skip to main content
Log in

h1- and h2-calponins are not essential for norepinephrine- or sodium fluoride-induced contraction of rat aortic smooth muscle

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

To investigate the controversial issue concerning the role of calponin in smooth muscle contraction, this study examined the relationship between smooth muscle calponin and the contraction of aortic rings from different strains of rats: Sprague-Dawley (SD), Wistar, and Wistar Kyoto (WKY). Western blot analysis demonstrated that h1- and h2-calponins are present in aortic smooth muscle from adult SD rats but not Wistar or WKY rats. Nevertheless, h1-calponin is detectable in stomach from Wistar rats, although at a much lower level compared with that in the SD rat stomach. This suggests that a repressed expression of the gene, instead of a simple null mutation, may have caused its absence from the aortic smooth muscle. Despite the presence or absence of calponin, the aortic smooth muscles from the different strains of rats all develop contractions in response to the physiological agonist norepinephrine (NE) and following activation with the plasma membrane receptor-independent NaF induction. The data indicate that h1- and h2-calponins are not essential for NE- and NaF-induced contractions in aortic smooth muscle. The calponin-positive adult SD rat aorta was found to be more sensitive in contractile response to NE and NaF inductions compared with the calponin-negative rat aortae. This may imply a potential modulator function of calponin in the contraction of smooth muscle, whereas other contractile protein isoform differences between these rat strains may also play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABE, M., TAKAHASHI, K. & HIWADA, K. (1990) Effect of calponin on actin-activated myosin ATPase activity. J. Biochem. 108, 835–8.

    PubMed  Google Scholar 

  • ADAM, L. P., HAEBERLE, J. R. & HATHAWAY, D. R. (1995) Calponin is not phosphorylated during contractions of porcine carotid arteries. Am. J. Physiol. 268, C903–9.

    PubMed  Google Scholar 

  • ADEAGBO, A. S. & TRIGGLE, C. R. (1991) Mechanism of vascular smooth muscle contraction by sodium fluoride in the isolated aorta of rat and rabbit. J. Pharmacol. Exper. Therap. 258, 66–73.

    Google Scholar 

  • ADEAGBO, A. S. & TRIGGLE, C. R. (1993) Interactions of nitric oxide synthase inhibitors and dexamethasone with a-adrenoceptor-mediated responses in rat aorta. Br. J. Pharmacol. 109, 495–501.

    PubMed  Google Scholar 

  • APPLEGATE, D., FENG, W., GREEN, R. S. & TAUBMAN, M. B. (1994) Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. J. Biol. Chem. 269, 10683–90.

    PubMed  Google Scholar 

  • BÁRÁNY, M., ROKOLYA, A. & BÁRÁNY, K. (1991) Absence of calponin phosphorylation in contracting or resting arterial smooth muscle. FEBS Lett. 279, 65–8.

    PubMed  Google Scholar 

  • BOGATCHEVA, N. V. & GUSEV, N. (1995) Interaction of smooth muscle calponin with phospholipids. FEBS Lett. 371, 123–6.

    PubMed  Google Scholar 

  • CHILDS, T. J., WATSON, M. H., NOVY, R. E., LIN, J. J.-C. & MAK, A. S. (1992) Calponin and tropomyosin interaction. Biochem. Biophys. Acta 1121, 41–6.

    PubMed  Google Scholar 

  • DRAEGER, A., GIMONA, M., STUCKERT, A., CELIS, J. E. & SMALL, J. V. (1991) Calponin: developmental isoforms and low molecular weight variant. FEBS Lett. 291, 24–8.

    PubMed  Google Scholar 

  • EL-MEZGUELDI, M., STRASSER, P., FATTOUM, A. & GIMONA, M. (1996) Expressing functional domains of mouse calponin: involvement of the region around alanine 145 in the actomyosin ATPase inhibitory activity of calponin. Biochemistry 35, 3654–61.

    PubMed  Google Scholar 

  • FUJ II, T., HIROMORI, T., HAMAMOTO, M. & SUZUKI, T. (1997) Interaction of chicken gizzard smooth muscle calponin with brain microtubules. J. Biochem. 122, 344–51.

    PubMed  Google Scholar 

  • GAO, J., HWANG, J. M. & JIN, J.-P. (1996) Complete nucleotide sequence, structural organization and an alternative spliced exon of mouse h1-calponin gene. Biochem. Biophys. Res. Commun. 218, 292–7.

    Google Scholar 

  • GIMONA, M., HERZOG, M., VANDEKERECKHOVE, J. & SMALL, J. V. (1990) Smooth muscle specific expression of calponin. FEBS Lett. 274, 159–62.

    PubMed  Google Scholar 

  • GIMONA, M., SPARROW, M. P., STRASSER, P., HERZOG, M. & SMALL, J. V. (1992) Calponin and SM 22 isoforms in avian and mammalian smooth muscle. Absence of phosphorylation in vivo. Eur. J. Biochem. 205, 1067–75.

    PubMed  Google Scholar 

  • GLUKHOVA, M. A., FRID, M. G. & KOTELIANSKY, V. E. (1990) Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle. J. Biol. Chem. 265, 13042–6.

    PubMed  Google Scholar 

  • GONG, M. C., IIZUKA, K., NIXON, G., BROWNE, J. P., HALL, A., ECCLESTON, J. F., SUGAI, M., KOBAYASHI, S., SOMLYO, A. V. & SOMLYO, A. P. (1996) Role of guanine nucleotide-binding proteins-ras-family or trimeric proteins or both-in Ca2+ sensitization of smooth muscle. Proc. Natl Acad. Sci. USA 93, 1340–45.

    PubMed  Google Scholar 

  • GRACEFFA, P., ADAM, L. P. & MORGAN, K. G. (1996) Strong interaction between caldesmon and calponin. J. Biol. Chem. 271, 30336–9.

    PubMed  Google Scholar 

  • HAEBERLE, J. R. (1994) Calponin decreases the rate of crossbridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. J. Biol. Chem. 269, 12424–31.

    PubMed  Google Scholar 

  • HAI, C.-M. & MURPHY, R. A. (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106.

    PubMed  Google Scholar 

  • HARTSHORNE, D. J. (1987) Biochemistry of contractile process in smooth muscle. In Physiology of the Gastrointestinal Tract (2nd edn) (edited by JOHNSON, L. R.), pp. 423–82 New York: Raven Press.

    Google Scholar 

  • HERLIHY, J. T. & MURPHY, R. A. (1973) Length-tension relationship of smooth muscle of the hog carotid artery. Circ. Res. 33, 275–83.

    PubMed  Google Scholar 

  • HORIUCHI, K. Y. & CHACKO, S. (1991) The mechanism for the inhibition of actin-activated ATPase of smooth muscle heavy meromyosin by calponin. Biochem. Biophys. Res. Commun. 176, 1487–93.

    PubMed  Google Scholar 

  • ITOH, T., SUZUKI, S., SUZUKI, A., NAKAMURA, F., NAKA, M. & TANAKA, T. (1994) Effects of exogenously applied calponin on Ca2+-regulated force in skinned smooth muscle of rabbit mesenteric artery. Eur. J. Physiol. 427, 301–8.

    Google Scholar 

  • JAWOROWSKI, A., ANDERSON, K. I., ARNER, A., ENGSTROM, M., GIMONA, M., STRASSER, P. & SMALL, J. V. (1995) Calponin reduces shortening velocity in skinned taenia coli smooth muscle fibers. FEBS Lett. 365, 167–71.

    PubMed  Google Scholar 

  • JIANG, Z., GRANGE, R. W., WALSH, M. P., & KAMM, K. E. (1997) Adenovirus-mediated transfer of the smooth muscle cell calponin gene inhibits proliferation of smooth muscle cells and fibroblasts. FEBS Lett. 413, 441–5.

    PubMed  Google Scholar 

  • JIN, J.-P., WALSH, M. P., RESEK, M. R. & MCMARTIN, G. A. (1996) Expression and epitopic conservation of calponin in different smooth muscles and during development. Biochem. Cell Biol. 74, 187–96.

    Google Scholar 

  • LEHMAN, W. (1991) Calponin and the composition of smooth muscle thin filaments. J. Muscle Res. Cell Motil. 12, 221–4.

    PubMed  Google Scholar 

  • LI, X.-F. & TRIGGLE, C. R. (1993) Effects of pertussis and cholera toxins on a-adrenoceptor function in rat tail artery: differences in hypertension. Can. J. Physiol. Pharmacol. 71, 791–9.

    PubMed  Google Scholar 

  • LIN, Y., YE, L.-H., ISHIKAWA, R., FUJITA, K. & KOHAMA, K. (1993) Stimulatory effect of calponin on myosin ATPase activity. J. Biochem. 113, 643–5.

    PubMed  Google Scholar 

  • MABUCHI, K., LI, B., IP, W. & TAO, T. (1997) Association of calponin with desmin intermediate filaments. J. Biol. Chem. 272, 22662–6.

    PubMed  Google Scholar 

  • MAKUCH, R., BIRUKOV, K., SHIRINSKY, V. & DABROWSKA, R. (1991) Functional interrelationship between calponin and caldesmon. Biochem. J. 280, 33–8.

    PubMed  Google Scholar 

  • MARSTON, S. B. & SMITH, C. W. J. (1985) The thin filaments of smooth muscles. J. Muscle. Res. Cell Motil. 6, 669–708.

    PubMed  Google Scholar 

  • MENICE, C. B., HULVERSHORN, J., ADAM, L. P., WANG, C.-L. A. & MORGAN, K. G. (1997) Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J. Biol. Chem. 272, 25157–61.

    PubMed  Google Scholar 

  • MINO, T., YUASA, U., NAKA, M. & TANAKA, T. (1995) Phosphorylation of calponin mediated by protein kinase C in association with contraction in porcine coronary artery. Biochem. Biophys. Res. Commun. 208, 397–404.

    PubMed  Google Scholar 

  • NIGAM, R., TRIGGLE, C. R., RESEK, M. E., MCMARTIN, G. A. & JIN, J.-P. (1996) Relationships between expression of smooth muscle calponin and contraction of the developing rat aorta. Biophys. J. 70, A379.

    Google Scholar 

  • NISHIDA, W., KITAMI, Y. & HIWADA, K. (1993) cDNA cloning and mRNA expression of calponin and SM22 in rat aorta smooth muscle cells. Gene 130, 297–302.

    PubMed  Google Scholar 

  • NORTH, A. J., GIMONA, M., CROSS, R. A. & SMALL, J. V. (1994) Calponin is localized in both the contractile apparatus and the cytoskeleton of smooth muscle cells. J. Cell Sci. 107, 437–44.

    PubMed  Google Scholar 

  • SHIRINSKY, V. P., BIRYNKOV, K. G., HETTACH, J. M. & SELLERS, J. R. (1992) Inhibition of the relative movement of actin and myosin by caldesmon and calponin. J. Biol. Chem. 267, 15886–992.

    PubMed  Google Scholar 

  • SOMLYO, A. P. & SOMLYO, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231–6.

    PubMed  Google Scholar 

  • STRASSER, P., GIMONA, M., HERBERT, M., HERZOG, M. & SMALL, J. V. (1993) Mammalian calponin: identification and expression of genetic variants. FEBS Lett. 330, 13–18.

    PubMed  Google Scholar 

  • STULL, J. T., GALLAGHER, J. P., HERRING, B. P. & KAMM, K. E. (1991) Vascular smooth muscle contractile elements: cellular regulation. Hypertension 17, 723–32.

    PubMed  Google Scholar 

  • SZYMANSKI, P. T. & TAO, T. (1993) Interaction between calponin and smooth muscle myosin. FEBS Lett. 331, 256–9.

    Google Scholar 

  • TAKAHASHI, K., HIWADA, K. & KOKUBU, T. (1986) Isolation and characterization of a 34000-dalton calmodulinand F-actin-binding protein from chicken gizzard smooth muscle. Biochem. Biophys. Res. Commun. 141, 20–26.

    PubMed  Google Scholar 

  • TAKAHASHI, K., HIWADA, K. & KOKUBU, T. (1988) Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension 11, 620–26.

    PubMed  Google Scholar 

  • TAKAHASHI, K. & NADAL-GINARD, B. (1991) Molecular cloning and sequence analysis of smooth muscle calponin. J. Biol. Chem. 266, 13284–8.

    PubMed  Google Scholar 

  • TANG, D.-C., KANG, H.-M., JIN, J.-P., FRASER, E. D. & WALSH, M. P. (1996) Structure-function relations of smooth muscle calponin: the critical role of serine-175. J. Biol. Chem. 271, 8605–11.

    PubMed  Google Scholar 

  • TRABELSI-TERZIDIS, H., FATTOUM, A., REPRESA, A., DESSI, F., BEN-ARI, Y. & DER TERROSSIAN, E. (1995) Expression of an acidic isoform of calponin in rat brain: Western blot on one-or two-dimensional gels and immunolocalization in cultured cells. Biochem. J. 306, 211–15.

    PubMed  Google Scholar 

  • UEKI, N., SOBUE, K., KANDA, K., HADA, T. & HIGASHINO, K. (1987) Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cells. Proc. Natl Acad. Sci. USA 84, 9049–53.

    PubMed  Google Scholar 

  • WALSH, M. P. (1991) Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem. Cell Biol. 69, 771–800.

    PubMed  Google Scholar 

  • WINDER, S. J. & WALSH, M. P. (1990) Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J. Biol. Chem. 265, 10148–55.

    PubMed  Google Scholar 

  • WINDER, S. J., ALLEN, B. G., FRASER, E. D., KANG, H.-M., KARGACIN, G. J. & WALSH, M. P. (1993) Calponin phosphorylation in in vitro and intact muscle. Biochem. J. 296, 827–36.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigam, R., Jin, JP. & Triggle, C.R. h1- and h2-calponins are not essential for norepinephrine- or sodium fluoride-induced contraction of rat aortic smooth muscle. J Muscle Res Cell Motil 19, 695–703 (1998). https://doi.org/10.1023/A:1005389300151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005389300151

Keywords

Navigation