Skip to main content
Log in

Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Established myogenic cell lines of different species and tissue origin have been used to study expression and organisation of muscle-specific proteins during differentiation. Furthermore, primary cultures of rat myocard cells were used to examine these same processes during dedifferentiation. In particular, we were interested in the general mechanism that underlies the changes in the supramolecular organisation of titin during in vitro myogenesis. It became obvious that in the differentiating muscle cell cultures the redistribution of desmin, actin and myosin in a typical, differentiation state dependent fashion, always showed a certain delay when compared to titin. The sequence of changes in the assembly of cytoskeletal and sarcomeric structures observed during differentiation of the cell lines was reversed during the process of dedifferentiation in cultured rat myocard cells. These results all indicate that titin is an early marker of myogenic differentiation, both in vivo and in vitro, and that the typical reorganisation of this giant molecule is independent of species or muscle cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AUSMAJ., FÜRSTD., THONÉF., FLAMENGW., WEBERK., RAMAEKERSF. & BORGERSM. (1995) Molecular changes of titin in left ventricular dysfunction as a result of chronic hibernation. J. Mol. Cell. Cardiol. 27, 1203–12.

    Google Scholar 

  • BABAÏF., MUSEVI-AGHDAMJ., SCHÜRCHW., ROYALA. & GABBIANIG. (1990) Coexpression of α-sarcomeric actin, α-smooth muscle actin and desmin during myogenesis in rat and mouse embryos. I. Skeletal muscle. Differentiation 44, 132–42.

    Google Scholar 

  • BADERD., MASAKIT. & FISCHMAND. A. (1982) Immunohistochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–70.

    Google Scholar 

  • BAINSW., PONTEP., BLAUH. & KEDESL. (1984) Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol. Cell. Biol. 4, 1449–53.

    Google Scholar 

  • BARBETJ. P., THORNELLL.-E. & BUTLER-BROWNG. S. (1991) Immunocytochemical characterisation of two generations of fibers during the development of the human quadriceps muscle. Mech. Dev. 53, 3–11.

    Google Scholar 

  • BLAUH., CHIUC.-P. & WEBSTERC. (1983) Nucleoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–80.

    Google Scholar 

  • BOCHATON-PIALLATM.-L., ROPRAZP., GABBIANIG., SANTEUSANIOG., PALMEIRIG., SCHIAROLIS. & SPAGNOLIL. G. (1992) Actin isoforms and intermediate filament protein expression in human developing skeletal muscle. B.A.M. 2, 83–7.

    Google Scholar 

  • BUCKINGHAMM. E. (1985) Actin and myosin multigene families: their expression during the formation of skeletal muscle. Essays Biochem. 20, 77–109.

    Google Scholar 

  • DEBUSW., WEBERK. & OSBORNM. (1983) Monoclonal antibodies to desmin, the muscle specific intermediate filament. EMBO J. 2, 2305–12.

    Google Scholar 

  • DEGROOTI. J. M., LAMERSW. H. & MOORMANA. F. M. (1989) Isomyosin expression patterns during rat heart morphogenesis: an immuno-histochemical study. Anat. Rec. 224, 365–73.

    Google Scholar 

  • DeJONGF., GEERTSW. J. C., LAMERSW. H., LOSJ. A. & MOORMANA. H. M. (1990) Isomyosin expression during formation of the tubular chicken heart: a three-dimensional immunohistochemical analysis. Anat. Rec. 226, 213–27.

    Google Scholar 

  • DLUGOSZA. A., ANTINP. B., NACHMIASV. T. & HOLTZERH. (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J. Cell Biol. 99, 2268–78.

    Google Scholar 

  • FISCHMAND. A. (1986) Myofibrillogenesis and the morphogenesis of skeletal muscle. In Myology. Basic and Clinical. (edited by ENGELA. G. & BANKERB. Q.) pp. 5–30. New York: McGraw-Hill.

    Google Scholar 

  • FRANKE. D., TUSZYNSKIP. & WARRENL. (1982) Localization of vimentin and desmin in BHK21/C13 cells and in baby hamster kidney. Exp. Cell Res. 139, 235–47.

    Google Scholar 

  • FULTONA. B. & ISAACSW. B. (1991) Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. BioEssays 13, 157–61.

    Google Scholar 

  • FÜRSTD. O., OSBORNM., NAVER. & WEBERK. (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J. Cell Biol. 109, 517–27.

    Google Scholar 

  • GARDD. & LAZARIDESE. (1980) The synthesis and distribution of desmin and vimentin during myogenesis in vitro. Cell 19, 263–75.

    Google Scholar 

  • GREASERM. L., HANDELS. E., WANGS.-M., SCHULTZE., BULINSKIJ. C. & LESSARDJ. L. (1989) Assembly of titin, myosin, actin and tropomyosin into myofibrils in cultured chick cardiomyocytes. In Cellular and molecular biology of muscle development, New Series, Vol. 93. (edited by STOCKDALEF. & KEDESL.) pp. 246–57. New York: Liss.

    Google Scholar 

  • HANDELS. E., WANGS.-M., GREASERM., SCHULTZE., BULINSKIJ. C. & LESSARDJ. L. (1989) Skeletal muscle myofibrillogenesis as revealed with a monoclonal antibody to titin in combination with detection of the alpha-and gamma isoforms of actin. Dev. Biol. 132, 35–44.

    Google Scholar 

  • HANDELS. E., GREASERM. L., SCHULTZE., WANGS.-M., BULINSKIJ. C., LINJ. J.-C. & LESSARDJ. L. (1991) Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell Tissue Res. 263, 419–30.

    Google Scholar 

  • HOLTZERH., SCHULTHEISST., DILULLOC., CHOIJ., COSTAM., LUM. & HOLTZERS. (1990) Autonomous expression of the differentiation programs of cells in the cardiac and skeletal myogenic lineages. Ann. NY Acad. Sci. 599, 158–69.

    Google Scholar 

  • KIMESB. W. & BRANDTB. L. (1976) Properties of a clonal muscle cell line from rat heart. Exp. Cell Res. 98, 367–81.

    Google Scholar 

  • LAEMMLIU. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227, 680–5.

    Google Scholar 

  • LOMPRÉA.-M., NADAL-GINARDB. & MAHDAVIV. (1984) Expression of the cardiac ventricular α-and β-Myosin Heavy Chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259, 6437–46.

    Google Scholar 

  • LUM. H., DILULLOC., SCHULTHEISST., HOLTZERS., MURRAYJ. M., CHOIJ., FISCHMANND. A. & HOLTZERH. (1992) The vinculin/sarcomeric α-actinin/α-actin nexus in cultured cardiac myocytes. J. Cell Biol. 117, 1007–22.

    Google Scholar 

  • LYONSG., SCHIAFFINOS., SASSOOND., BARTONP. & BUCKINGHAMM. (1990) Development regulation of myosin gene expression in mouse cardiac muscle. J. Cell Biol. 111, 2427–36.

    Google Scholar 

  • MARUYAMAK. (1994) Connectin, an elastic protein of striated muscle. Biophysical Chemistry 50, 73–85.

    Google Scholar 

  • MASAKIT., BADERD. M., REINACHF. C., SHIMIZUT., OBINATAT., SHAFIQS. A. & FISCHMAND. A. (1982) Monoclonal antibody analysis of myosin heavy chain and the protein isoforms during myogenesis. In Molecular and cellular control of muscle development. (edited by PEARSONM., EPSTEINH., KAUFMANH. S. & GARRELSJ. L.) pp. 405–17. New York: Cold Spring Harbor Lab Press.

    Google Scholar 

  • NAGA. C., KREHELW. & CHENGM. (1986) Distribution of vimentin and desmin filaments in embryonic cardiac muscle cells in culture. Cytobios 45, 195–209.

    Google Scholar 

  • OSBORNM. & WEBERK. (1982) Immunofluorescence and immunocytochemical procedure with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol. 24, 97–132.

    Google Scholar 

  • PIEPERF. R., SLOBBER., RAMAEKERSF. C. S., CUIJPERSH. T. & BLOEMENDALH. (1987) Upstream regions of the hamster desmin and vimentin genes regulate expression during in vitro myogenesis. EMBO J. 6, 3611–18.

    Google Scholar 

  • QUINLANR. A. & FRANKEW. W. (1982) Heteropolymer of vimentin and desmin in vascular smooth muscle and cultured baby hamster kidney cells demonstrated by chemical crosslinking. Proc. Natl. Acad. Sci. USA 79, 3452–6.

    Google Scholar 

  • RAMAEKERSF. C. S., HUIJSMANSA., MOESKERO., KANTA., JAPP., HERMANC. & VOOIJSP. (1983) Monoclonal antibodies against keratin filaments, specific for glandular epithelia and their tumours. Use in surgical pathology. Lab. Invest. 49, 353–61.

    Google Scholar 

  • RAMAEKERSF. C. S., MOESKERO., HUIJSMANSA., SCHAARTG., WESTERHOFG., WAGENAAR, HERMANC. J. & VOOIJG. P. (1985) Intermediate filament proteins in the study of tumor heterogeneity: an indepth study of tumors of the urinary and respiratory tracts. Ann. NY Acad. Sci. 455, 614–34.

    Google Scholar 

  • RAMAEKERSF. C. S., HUIJSMANSA., SCHAARTG., MOESKERO. & VOOIJSG. P. (1987) Tissue distribution of keratin 7 as monitored by a monoclonal antibody. Expl. Cell Res 170, 235–49.

    Google Scholar 

  • RUDZICKAD. L. & SCHWARZR. J. (1988) Sequential activation of α-actin genes during avian cardiogenesis: vascular smooth muscle α-actin gene transcripts mark the onset of cardiomyocyte differentiation. J. Cell Biol. 107, 2575–86.

    Google Scholar 

  • SCHAARTG., VIEBAHNC., LANGMANNW. & RAMAEKERSF. C. S. (1989) Desmin and titin expression in early postimplantation mouse embryos. Development 107, 585–96.

    Google Scholar 

  • SCHAARTG., PIEPERF. R., KUIJPERSH. J. H., BLOEMENDALH. & RAMAEKERSF. C. S. (1991) Baby hamster kidney (BHK-21/C13) cells can express striated muscle type proteins. Differentiation 46, 105–15.

    Google Scholar 

  • SCHAARTG., VAN DERVENP. F. M. & RAMAEKERSF. C. S. (1993) Characterization of cardiotin, a structural component in the myocard. Eur. J. Cell Biol. 62, 34–48.

    Google Scholar 

  • SKALLIO., ROPRAZP., TRZECIAKA., BENZONANAG., GILLESSEND. & GABBIANIG. (1986) A monoclonal antibody against α-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787–96.

    Google Scholar 

  • SKALLIO., GABBIANIG., BABAÏF., SEEMAYERT. A., PIZZOLATOG. & SCHÜRCHW. (1988) Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Am. J. Pathol. 130, 513–31.

    Google Scholar 

  • STOKERM. P. G. & MACPHERSONI. A. (1961) Studies on transfection of hamster cells by polyoma virus in vitro. Virology 14, 359–70.

    Google Scholar 

  • TOKUYASUK. T. & MAHERP. A. (1987) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J. Cell Biol. 105, 2781–93.

    Google Scholar 

  • TOKUYASUK. T., MAHERP. A. & SINGERS. J. (1984) Distributions of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study. J. Cell Biol. 96, 1961–72.

    Google Scholar 

  • TOWBINH., STAEHELINT. & GORDONJ. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–3.

    Google Scholar 

  • TRAUBP. (1985) Intermediate filaments: a review. Berlin: Springer Verlag.

    Google Scholar 

  • TRINICKJ. (1992) Understanding the functions of titin and nebulin. FEBS Lett. 307, 44–8.

    Google Scholar 

  • VANDEKERCKHOVEJ. & WEBERK. (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126, 783–802.

    Google Scholar 

  • VANDEKERCKHOVEJ. & WEBERK. (1981) Actin typing on total cellular extracts: a highly sensitive proteinchemical procedure able to distinguish different actins. Eur. J. Biochem. 113, 595–603.

    Google Scholar 

  • VANDEKERCKHOVEJ., BUGAISKYG. & BUCKINGHAMM. (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. J. Biol. Chem. 261, 121–9.

    Google Scholar 

  • VAN DERLOOPF. T. L., SCHAARTG., LANGMANNW., RAMAEKERSF. C. S. & VIEBAHNCH. (1992) Expression and organization of muscle specific proteins during the early developmental stages of the rabbit heart. Anat. Embryol. 185, 439–50.

    Google Scholar 

  • VAN DERVENP. F. M., SCHAARTG., JAPP. H. K., SENGERSR. C. A., STADHOUDERSA. M. & RAMAEKERSF. C. S. (1992) Differentiation of human skeletal muscle cells in culture: maturation as indicated by titin and desmin striation. Cell Tissue Res. 270, 189–98.

    Google Scholar 

  • VAN DERVENP. F. M., SCHAARTG., CROESH. J. S., JAPP. H. K., GINSELL. A. & RAMAEKERSF. C. S. (1983) Titin aggregates associated with intermediate filaments align along stress fiber-like structures during human skeletal muscle cell differentiation. J. Cell Sci. 106, 749–59.

    Google Scholar 

  • VIEBAHNCH., LANEE. B. & RAMAEKERSF. C. S. (1988) Keratin and vimentin expression in early organogenesis in the rabbit embryo. Cell Tissue Res. 253, 553–62.

    Google Scholar 

  • VITADELLOM., MATTEOLIM. & GORZAL. (1990) Neurofilament proteins are co-expressed with desmin in heart conduction system myocytes. J. Cell Sci. 97, 11–21.

    Google Scholar 

  • WANGS.-M. & GREASERM. L. (1985) Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J. Muscle Res. Cell Motil. 6, 293–312.

    Google Scholar 

  • WHALENR. G., SELLS. M., BUTLER-BROWNG. S., SCHWARTZK., BOUVERETP. & PINSET-HÄRSTRÖMI. (1981) Three myosin heavy chain isozymes appear sequentially in rat muscle development. Nature 292, 805–9.

    Google Scholar 

  • WOODCOCK-MITCHELLJ., MITCHELLJ. J., LOWR. B., KIENYM., SENGELP., RUBBIAL., SKALLIO., JACKSONB. & GABBIANIG. (1988) α-Smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39, 161–6.

    Google Scholar 

  • YAFFED. & SAXELO. (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Loop, F.T.L., van Eys, G.J.J.M., Schaart, G. et al. Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents. J Muscle Res Cell Motil 17, 23–36 (1996). https://doi.org/10.1007/BF00140321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140321

Keywords

Navigation