Skip to main content
Log in

Vacancy Contents in MnZn Ferrites From TG Curves

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Expressions for calculating the cation vacancy contents of MnZn ferrites from thermogravimetric curves are presented together with some experimental data. In a single-phase MnZn ferrite synthesized by conventional ceramic procedures, the O2 evolution accompanying ferrite formation follows the formal equation.

Mn2+ σα Znσβ Fe3+ 2σ(1–γ) [V ]σ/4(1–2γ) O4 =σ'/σ Mn2+ σ(α–2ϕ) Znσβ Fe2+ 2σθ Mn3+ 2σϕ Fe3+ 2σ(1–γ–θ) [V ]σ/4(1–2γ–3ϕ) O4 +σ'φ/2O2 (g)

where α and β denote the MnO and ZnO mole fractions in the primary mixture γ=α+β, θ and ϕ depend on the quantities of Fe2+ and Mn3+ formed, respectively, φ=θ–ϕ and σ'/σ is a function of the former parameters. Even though the relative amounts of Fe2+ /Fe3+ and Mn2+ /Mn3+ remain uncertain, the vacancy content [V ] of the ferrite can be determined because it depends on φ alone, which is related to the change in mass of the sample as the synthesis takes place through the equation

φ=(1.5–γ) µβO2 (1–m f /m i )

Here, m i and m f are the masses of the sample before and after O2 evolution, µB is the formula mass of the ferrite and µO2 is the O2 molar mass. Practically vacancy-free single-phase MnZn ferrite samples were obtained by sintering in air at 1250°C and cooling in pure N2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. González Arias, A. del Cueto, J. M. Muñoz, C. de Francisco, L. Torres, A. G. Flores, M. Zazo and J. Iñiguez, Applied Physicas, A63 (1996) 453.

    Article  Google Scholar 

  2. A. González Arias, A. del Cueto, J. M. Muñoz and C. de Francisco, Materials Letters, 37 (1998) 4.

    Article  Google Scholar 

  3. A. González Arias, J. M. Muñoz and C. de Francisco, Materials Letters, 34 (1998) 154.

    Article  Google Scholar 

  4. K. H. J. Buschow, Handbook of Magnetic Materials Vol. 8, Elsevier, 1995, p. 189.

    Google Scholar 

  5. A. Morita and A. Okamoto, Proc. Int. Conf. Ferrites Japan, 1980.

  6. R. Dieckmann, Ber. Bunsenges. Phys. Chem., 86 (1982) 112.

    CAS  Google Scholar 

  7. D. Stoppels, J. of Mag. and Mag. Materials, 160 (1996) 323.

    Article  CAS  Google Scholar 

  8. R. Morineau, Phys. Stat. Sol. (a), 38 (1976) 559.

    CAS  Google Scholar 

  9. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala, O.E., Lardizábal, D., Reyes, A. et al. Vacancy Contents in MnZn Ferrites From TG Curves. Journal of Thermal Analysis and Calorimetry 59, 943–949 (2000). https://doi.org/10.1023/A:1010138712125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010138712125

Navigation